
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
ROLE-BASED ACCESS CONTROL FOR LOOSELY

COUPLED DISTRIBUTED DATABASE MANAGEMENT
SYSTEMS

by

 Greg Nygard
Faouzi Hammoudi

March 2002

 Thesis Advisor: James Bret Michael
 Thesis Co-Advisor: John Osmundson

Approved for public release; distribution is unlimited

Report Documentation Page

Report Date
29 Mar 2002

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Role-Based Access Control for Loosely Coupled
Distributed Database Management Systems

Contract Number

Grant Number

Program Element Number

Author(s)
Hammoudi, Faouzi Nygard, Greg

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Naval Postgradaute School Monterey, California

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
132

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
ROLE-BASED ACCESS CONTROL FOR LOOSELY COUPLED DISTRIBUTED
DATABASE MANAGEMENT SYSTEMS

6. AUTHOR(S) Greg Nygard
 Faouzi Hammoudi

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Much of the work to date to apply Role-Based Access Control (RBAC) to database management systems has focused on single
database systems or an integrated distributed database system. For situations where the need exists to consolidate multiple
independent databases, and where the direct integration of the databases is neither practical nor desirable, the application of
RBAC requires that policy be enforced via a method that is distinct from the databases. The method must provide for the
verification of the RBAC policy, while allowing for the independence of the various databases on which the policy is enforced.
This paper proposes a model for an application that provides for a web-based interface for users to be granted access to data
held in various independent databases. The application enforces a strict RBAC policy on a well-defined set of accesses, while
alleviating the need for users to have a separate account on each of the databases.

15. NUMBER OF
PAGES

132

14. SUBJECT TERMS Database Management, Distributed Computing, Role-based Access Control,
Security Policy

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

ROLE-BASED ACCESS CONTROL FOR LOOSELY COUPLED
DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

Greg L. Nygard

Lieutenant, United States Navy
B.S., University of Arizona, 1993

Faouzi Hammoudi

Captain, Tunisian Air Force
Laureate in Electronic Engineering, University of Naples “Federico II”, Italy, 1992

Submitted in partial fulfillment of the

requirements for the degrees of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
AND

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Authors: Greg L. Nygard

 Faouzi Hammoudi

Approved by: James Bret Michael, Thesis Advisor

John Osmundson, Thesis Co-Advisor

 Dan Boger, Chairman, Information Technology Department

CDR Chris Eagle, Chairman, Computer Science Department

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Much of the work to date to apply Role-Based Access Control (RBAC) to

database management systems has focused on single database systems or an integrated

distributed database system. For situations where the need exists to consolidate multiple

independent databases, and where the direct integration of the databases is neither

practical nor desirable, the application of RBAC requires that policy be enforced via a

method that is distinct from the databases. The method must provide for the verification

of the RBAC policy, while allowing for the independence of the various databases on

which the policy is enforced. This paper proposes a model for an application that

provides for a web-based interface for users to be granted access to data held in various

independent databases. The application enforces a strict RBAC policy on a well-defined

set of accesses, while alleviating the need for users to have a separate account on each of

the databases.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. BACKGROUND ..1
A. INTRODUCTION..1
B. DISCUSSION ...1
C. NIST RBAC MODEL..3

1. Flat RBAC ..3
2. Hierarchical RBAC..4
3. Constrained DRBAC ...5

a. Static separation of duties (SSD)..6
b. Dynamic Separation of Duty (DSD)...6

4. Symmetric RBAC...7
D. OBSERVATIONS..7

II. APPROACH ...9
A. DATABASE ROLE-BASED ACCESS CONTROL (DRBAC)...................9
B. QUERY VALIDATION ..9
C. WHY JAVA..10
D. TREE STRUCTURE...15
E. PROCESS ...16

1. User Creation of Query ...16
2. Query Validation..16
3. Query Execution...17
4. Display of Results...17

III. DESIGN ..19
A. REQUIREMENTS ANALYSIS ...19

1. Security ...20
2. Platform Independence ...20
3. Access Transparency ...20
4. Flexibility ..20
5. Ease of Management..21
6. Cost Effective..21

B. USER INTERACTION PROCESS..21
C. JDRBAC TREE DESIGN ...24
D. APPLICATION DESIGN ...27

1. Identification and Authentication ..28
2. Role based access control policy implementation29
3. Temporal Validation Mechanism ...29
4. JDRBAC Web application ..30

IV. JDRBAC APPLICATION DEVELOPMENT..33
A. INTRODUCTION..33
B. TASK DEFINITION ...33

 vii

C. CODE DEVELOPMENT..35
1. Login..35
2. Interface ..36
3. JDRBAC Tree Structure ...37
4. Database Queries ...38
5. Reference ...38

V. JDRBAC APPLICATION IMPLEMENTATION ...41
A. INTRODUCTION..41
B. UDERSTANDING THE RBAC POLICY OF THE APPLICATION......41
C. MAPPING THE APPLICATION POLICY ...42
D. STORAGE OF THE JDRBAC REFERENCE DATA...............................43

1. Hypersonic SQL/ Hsqldb ..44
E. DESIGN OF THE RBAC POLICY REFERENCE DATA46
F. THE ADMINISTRATOR INTERFACE...46
G. TESTING..47
H. ADDITIONAL FUNCTIONALITY...48

VI. SECURITY...49
A. INTRODUCTION..49
B. DISCUSSION ...49
C. CLIENT – APPLICATION SECURITY...50
D. DATABASE – APPLICATION SECURITY ..51
E. DATABASE SECURITY ..54
F. APPLICATION SECURITY..54

VII. CASE STUDIES...55
A. INTRODUCTION..55
B. DISCUSSION ...55

VIII. CONCLUSIONS AND FUTURE WORK...59

LIST OF REFERENCES..63

APPENDIX A - JDRBAC SOURCE CODE ...65

INITIAL DISTRIBUTION LIST ...113

 viii

LIST OF FIGURES

Figure 1. Flat RBAC. ..4
Figure 2. Hierarchical RBAC..5
Figure 2a. Inheritance Hierarchy...5
Figure 2b. Activation Hierarchy..5
Figure 3. Constrained RBAC- Static SOD..6
Figure 4. Constrained RBAC- dynamic SOD. ..6
Figure 5a. JDRBAC co-located on Database Server. ...11
Figure 5b. JDRBAC on a separate web server..12
Figure 6. JDRBAC access to distributed DBMSs through co-location with single

database..11
Figure 7. JDRBAC access to distributed DBMSs with location distinct from

databases. ...13
Figure 8. JDRBAC access to distinct DBMSs with co-location on one DBMS.14
Figure 9. JDRBAC access to distributed DBMSs through separate location on web

server..14
Figure 10. JDRBAC process ...17
Figure 11. JDRBAC Architecture. ..19
Figure 12. JDRBAC Tree..26
Figure 13. JDRBAC Tree node. ..26
Figure 14. Example of a JDRBAC Tree..27
Figure 15. JDRBAC application architecture..28
Figure 16. JDRBAC application tasks. ...34
Figure 17. Login window ..35
Figure 18. Interface window. ..36
Figure 19. Result display window...38
Figure 20. Administrator interface ..45
Figure 21. Application administrator interface ...47
Figure 22. Application deployment...49
Figure 23. Securing the application with SSL...50
Figure 24. Adding encryption. ..51
Figure 25. Using JSSE to secure the application...53
Figure 26. Use of a proxy server. ..53

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. Query Methods...46

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF ACRONYMS

DBMS – Database Management System

DRBAC – Database Role-based Access Control

DSD – Dynamic Separation of Duty

HSQLDB – Hypersonic SQL Database

JCA – Java Cryptography Architecture

JCE – Java Cryptography Extension

JDBC – Java Database Connectivity

JDRBAC – Java Database Role-based Access Control

JSSE – Java Secure Sockets Extension

NIST – National Institute of Standards and Technology

RBAC – Role-based Access Control

RMI – Remote Method Invocation

SQL – Structured Query Language

SSD – Static Separation of Duty

SSL – Secure Sockets Layer

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGEMENTS

The authors wish to gratefully acknowledge the guidance, wisdom, and patience

of their thesis advisors, Dr. James Bret Michael and Dr. John Osmundson. Faouzi

Hammoudi dedicates his work to his parents Mekki and Cherifa Hammoudi, his wife

Habiba, and daughter Chaima for the time taken from them, for their encouragement, and

for their never-ending patience and love.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. BACKGROUND

A. INTRODUCTION
Much of the work to date to apply Role-Based Access Control (RBAC) to

database management systems has focused on single database systems or an integrated

distributed database system. In the military, situations such as joint operations arise

where the necessary data may be stored on databases that exist in separate organizations.

Such organizations may consist of different branches of the armed forces, distinct

government agencies, or various allied countries. A single composite database may be

too time-consuming or costly to implement. Direct integration of the databases may be

impractical due to security concerns as well as cost issues.

For situations where the need exists to consolidate multiple independent

databases, and where the direct integration of the databases is neither practical nor

desirable, the application of RBAC requires that policy be enforced via a method that is

distinct from the databases. The method must provide for the verification of the RBAC

policy, while allowing for the independence of the various databases on which the policy

is enforced.

This thesis proposes an application-level model that provides for a web-based

interface for users to be granted access to data held in various independent databases.

The solution enforces a strict RBAC policy on a well-defined set of accesses, while

alleviating the need for users to have a separate account on each of the databases. The

specifications of the model are detailed, and a prototype application is described that

provides the necessary functionality. Critical issues such as the security of the

application and its communication channels are discussed, and areas requiring future

research are also noted.

B. DISCUSSION
Role-based access control (RBAC) has been used in computer systems for at least

twenty years, but only within the past few years have rigorously defined general-purpose

RBAC models and implementations begun to appear. RBAC is a continuously evolving,

rich, and open-ended technology. For instance, various RBAC models are now being

 1

embedded in commercial-off-the-shelf software-based products, such as database

management and operating systems. Moreover, RBAC has been specialized for use with

component-based message-passing architectures. The U.S. National Institute of Standards

and Technology (NIST) has proposed a standard reference model to facilitate

interoperability among information systems that implement RBAC. NIST views RBAC

as a tool to enable the administration of security at a business-enterprise level rather at

the user-identity level.

A role is a semantic construct forming the basis of access control policy. Roles

can be assigned according to, for example, job functions performed in an enterprise. An

enterprise can be defined, for the purposes of this thesis, as any large organization that

utilizes distributed computing systems to support its operations. Once a role class is

defined, permissions and authorizations can be assigned to that role. Among the benefits

to an enterprise of using roles are the ability to administratively define and enforce

enterprise-specific security policies that cannot be achieved using other methods of

access control, and to dramatically streamline the process of authorization management.

For enterprise security, the importance of a role lies in its persistence within the

enterprise-computing paradigm. The permissions associated with a role can change as the

functions within an enterprise evolve over time. Membership within a role may be highly

transient as new employees join, and new job positions and assignments are created.

However, the notion of a role remains a relative constant. For example, a ship may have

constant turnover among commanding officers, and the duties of a ship’s captain may

evolve slowly over time, but the notion of the ship’s captain will remain a relative

constant. This persistence is what makes roles so attractive for managing permissions and

authorizations. RBAC makes it possible to separate the high-level policy management

from the low-level details required to assign permissions for operations directly to

individual users.

In addition roles being persistent, enterprise access control policies for

authorizing users are also natural and consistent with roles. Roles can be used to specify

competency, responsibility, authority, and delegation for tasks. Coupled with the notion

of constraints, roles can be used to enforce conflict-of-interest (e.g., separation-of-duty)

and workflow policies, among others.

 2

C. NIST RBAC MODEL

The NIST RBAC model is organized as four categories of abstractions of

increasing complexity. The levels are cumulative in that a higher level abstraction

subsumes the expressiveness of the lower level abstraction. The four categories and the

rationale for each one are given below.

1. Flat RBAC

The flat RBAC abstraction is the basis for the entire model, and is the most

primitive of the four levels of abstraction. The relationship between users, roles, and

permissions constitutes the base of the model. The definitions of the entities and

relationships in the model are as follows:

User: A user in this model is a human being or other autonomous agent such as a

process or a computer.

Role: A role is a job function or job title within the enterprise with some

associated semantics regarding the authority and responsibility conferred

on a member of a particular role.

Permission: A permission is an approval of a particular mode of access to one or

more objects in the system. Permissions confer the ability of the holder to

perform some action or actions in the system. In addition, each permission

can be represented as either a permission or prohibition.

User-Role: This relationship represents which user is assigned to perform what

kind of role in the enterprise.

Permission-Role: Assigns permission or a set of permissions to a specific role or

a set of roles.

Role-Role: Specifies the hierarchy between roles.

Users are assigned to roles, permissions are assigned to roles, and users acquire

permissions by being assigned roles. The relationships user-role and role-permissions can

be many-to-many (Figure 1).

 3

PA
Permissions
Assignment

P
Permissions

R
Roles

U
Users

UA
User Assignment

 Figure 1. Flat RBAC

The flat RBAC abstraction supports user-role review, thus providing a basis for

the determination of all users that are granted a specific role and the roles that are

permitted for a specific user. Moreover, users can simultaneously exercise permissions of

multiple roles, akin to multiple inheritances in an object-oriented model.

The rationale for the flat RBAC abstraction is based on the notion that

conventional group-based access control is robust. Although the NIST model does not

require support for sessions with discretionary role activation, it does require the ability

to activate multiple roles simultaneously and in single sessions.

The requirement for user-role review differentiates the flat RBAC abstraction

from the group-based access control modeling paradigm. However, the flat RBAC

abstraction leaves many issues open related to the scalability of the model, the nature of

the permissions, expression of permission revocation, and representation of role

administration.

 2. Hierarchical RBAC

The hierarchical model extends the flat RBAC abstraction by introducing the

notion of role hierarchies (see figure 2). A hierarchy is a partial ordering of roles,

whereby senior roles subsume the permissions of their juniors. Role hierarchies are a

natural means for structuring roles to reflect an enterprise’s line of authority and

responsibility. They can be inheritance hierarchies, meaning that the activation of an

instance of a senior role by a user (such as at login) implies the inheritance of the

permissions of all junior roles (see figure 2a), or activation hierarchies, in which there is

no implication of overall inheritance of permissions (see figure 2b). In the activation

hierarchy, the inheritance is limited to the roles which are subordinate to the specified

role in the tree structure of the model. Therefore, the NIST model has identified two sub-

 4

levels, which are the general (inheritance) hierarchical RBAC that uses the partial

ordering of roles, and the restricted (activation) hierarchical RBAC that uses simple

structures such as trees or inverted trees.

RH Role Hierarchy

UA
User

Assignment

PA
Permissions
Assignment P

Permissions
R

Roles
U

Users

Figure 2. Hierarchical RBAC

B C

D E F G

A

B C

D E F G

A

Figure 2a. Inheritance Hierarchy Figure 2b. Activation Hierarchy

The limited degree of inheritance afforded by this abstraction supports control

over power aggregation for a given role, and provides a way to prevent user errors or

malicious software from adversely affecting the system.

 3. CONSTRAINED RBAC

The constrained RBAC model introduces the semantics needed to enforce

separation of duty (SOD), which is a time-honored technique for mitigating the potential

for the occurrence of fraud and accidental damage attributed to sharing of duties. It is

often used to enforce conflict-of-interest policy that enterprises may employ to prevent

users from exceeding a reasonable level of authority for their role. The semantics of the

model at this level encompasses the principle of least privilege: users are given no more

 5

than the necessary privileges to perform their roles. The two categories of SOD are as

follows:

a. Static Separation of Duty (SSD)
 A constraint associated with the user-role assignment (see figure 3). SSD

is a way to enforce mutual exclusion between roles and can be centrally specified and

uniformly imposed on specific roles.

b. Dynamic Separation of Duty (DSD)
 A constraint associated with the activation of roles within user sessions

(see figure 4). It provides an organization with the capability to address potential conflicts

of interest at the time a user’s membership is authorized for a role.

SOD

PA
Permissions
Assignment

RH Role Hierarchy

P
Permissions

R
Roles

U
Users

UA
User

Assignment

Figure 3. Constrained RBAC- Static SOD

U
Users R

Roles

RH Role Hierarchy

UA
User Assignment

Sessions

SOD CONSTRAINT

P
Permissions

PA
Permissions
Assignment

Figure 4. Constrained RBAC- dynamic SOD

 6

 4. SYMMETRIC RBAC

Symmetric RBAC extends the semantics of the model to accommodate

permission-role review, which is similar to user-role review: it is possible to determine

the role to which a particular permission is assigned as well as the permission assigned to

a specific role. The permission-role review interface returns one of the two types of

results. The query-symmetric RBAC will include the semantics necessary for defining

direct and indirect assignment of permissions. Direct-permission assignment pertains to

the set of permissions that are assigned to the user directly. Indirect permission

assignment includes the direct permissions assignment and the set of permissions that are

inherited by the roles assigned to the user.

D. OBSERVATIONS

The NIST RBAC model provides a simple and methodic way to understand and

consequently implement enterprise security policy for user access control in a manner

that reduces the administrative overhead from the management of the access control

policy for the enterprise. Today, the existing implementations of RBAC are of two

categories. In the first category, we have implementations that are part of the operating

system, representing a module that mitigates the access control to the enterprise system.

The second category is an implementation that is part of the database management

system, where all access controls are mediated through that layer. The two precedent

solutions are somewhat problematic because of the potential compatibility and

interoperability issues that arise in a large-scale, distributed computing environment. The

solution that will be proposed in this thesis is to implement a general purpose mechanism

that is platform independent and that will allow the negotiation of the user access to

distributed databases across the boundaries of various enterprises. The mechanism will

rise above the level of a single organization, to function across any number of distinct

entities without dependence on any one enterprise.

 7

THIS PAGE INTENTIONALLY LEFT BLANK

 8

II. APPROACH

A. DATABASE ROLE-BASED ACCESS CONTROL (DRBAC)
Database RBAC is similar in many ways to the RBAC policy that would be

implemented in an operating system. Both are based on common tasks, with users

assigned to roles that are designed to provide sufficient access to the information required

to perform the tasks. The role is defined as a subset of privileges to specific units of data,

and a subset of operations that can be performed on these units. The user’s access to data

is controlled via the roles to which they are assigned, rather than through the specific

units of data. This higher level of control provides a higher degree of flexibility in

administration of privileges.

While an operating system policy is directed towards controlling access to

particular files and directories, a database policy is focused on the queries that enable

access to the information in the database. So the RBAC implementation in a database

becomes, in general terms, query validation. The access control is done by validating the

user query, based on the access privileges associated with the user’s role.

B. QUERY VALIDATION
The policy for query validation can be thought of in similar terms to the policy for

firewalls. A firewall policy can be stated in one of two ways: 1) allow access to

everything unless there is a specific rule to deny access, or 2) deny access to everything

unless there is a specific rule to allow access. The second method is generally accepted

as the more secure approach. For query validation, in this thesis we adopt the latter way

of interpreting policy: access to the database will not be granted unless the query is

specifically validated.

A query can be broken down into four parts: the tables of the database that are to

be accessed, the operation that will be performed, the specific tablefields that contain the

data of interest, and any conditions that apply. A basic format for a query in the

relational database model, expressed in the Structured Query Language (SQL), is as

follows:

 9

Operation Tablefield [Tablefield, ...]

FROM Table [Table, ...]

WHERE Condition

[AND] [Condition] ...

We have a given operation on one or more tablefields, which are taken from one

or more tables, with one or more conditions applied to the query. In validating the query,

the RBAC policy would have to verify that the user has permission to access data held

within the tables and the specific tablefields, and that the user can perform the given

operation on the tables within the boundaries established by the condition or conditions

provided. Hence, we define a role as a combination or combinations of the four elements

of a query, from which any query that a user wishes to execute on the database can be

compared to and validated against the authorizations and permissions of that role.

C. WHY JAVA?
In a distributed computing environment, information sharing can be critical to the

successful operation of an organization. Information needs to be provided to remote

users who may be using a variety of operating systems, platforms, web browsers, etc.

Java provides a means for development of an application that can be accessed by remote

users regardless of the platform or software employed by the user. The user can utilize a

web browser to access the server running the application, and multiple users can be given

access simultaneously. The application can be tailored for different users, and

reconfigured to provide for changing requirements.

For our Java Database Role-Based Access Control (JDRBAC) application, the

same code that creates the user interface also provides the RBAC policy implementation.

This allows for independence of the application from the databases that it accesses. The

application can establish a connection to the database, along with a defined scope of

access within the DBMS. The application can then provide subsets of its access to users

in the form of roles. The users do not need an account on the DBMS, because they log

into a role defined by the application. If the user’s needs change, the application can

transfer the user into a new role, or tailor the user’s existing role.

 10

The application runs separately from the DBMS, thus affording flexibility within

the architectural framework. The JDRBAC application can reside on the same server as

the database, or be located on a separate web server (see figures 5a and 5b). Separation

of the application and the DBMS can allow for additional layers of security to be in place

between the application server and the database system, such as a proxy server or a

firewall.

Database Queries

User Requests

Users

JDRBAC

Database

Web Server

Figure 5a. JDRBAC co-located on Database Server

 11

Database
 Queries

User Requests

Database

DB Server

 Users

JDRBAC

Web Server

Figure 5b. JDRBAC on a separate web server

The application can provide access to a distributed database, (see figures 6 and 7).

Database Queries

User Requests

Database

 DB Server

Database

 DB Server

Users

JDRBAC

Database

 Web Server

Figure 6. JDRBAC access to distributed DBMSs through co-location with single database

 12

Database
Queries

Database Queries

User Requests

Database

 DB Server

Database

 DB Server

Database

 DB Server

 Users

JDRBAC

 Web Server

Figure 7. JDRBAC access to distributed DBMSs with location distinct from databases

The primary advantage of implementing the RBAC policy through the application

is that it allows for the application to access multiple databases, across various platforms,

operating systems, or flavors of database management systems. The application can

potentially allow a user access to multiple databases, without having an account on any of

them (see figures 8 and 9). The access control policies of the databases can be

configured separately from the access control policy of the application. This simplifies

management of the databases, and centralizes control of the users’ access.

 13

Database Queries
Database
 Queries

User Requests

Database

 DB Server

Database

 DB Server

 Users

JDRBAC

Database

 Web Server

 Figure 8. JDRBAC access to distinct DBMSs with co-location on one DBMS

Database Queries

Database
Queries

Database
Queries

User Requests

Database

 DB Server

Database

 DB Server

Database

 DB Server

Users

JDRBAC

 Web Server

Figure 9. JDRBAC access to distributed DBMSs through separate location on web server

 14

D. TREE STRUCTURE

The JDRBAC implementation could be realized using tables within a database.

Tables could be defined within the database that contains the roles, with links to other

tables that provide for the various accesses that are given to the roles. But this directly

ties the application to the particular database. Alternatively, the application could take

advantage of the role mechanisms included with newer databases, such as Oracle 8i and

9i. Once again, this ties the application to the database, and does not allow for easy

integration of other platforms (such as Microsoft SQL server).

By providing a distinct data structure for the application, the platform

independence is maintained, as well as the ability to integrate access to multiple

databases through the application.

A tree structure can provide an efficient and effective means of implementing the

query validation mechanism of the JDRBAC. Within the tree, the roles would be defined

as the children of the root node. Under each role, the first set of children would be the

databases to which the role has been granted access. The children of each database node

would be the tables of that database that are available to the user. The children of each

table would be the tablefields that the user can view. The tablefield children would be the

operations (read (SELECT), write (INSERT), edit, etc.) that can be performed on that

tablefield. And the children of the operations, the leaves of the tree, would be any

conditional statements (e.g., username = “Smith”) that restrict the operation on that

tablefield.

This structure would allow for a top-down approach to the query validation. The

initial check of the query would be to determine the role of the user, which determines

the first child of the root (i.e., the role). Then the databases to be accessed by the query

would be checked against the children of the role node. From the databases, the tables

within each database would be checked for granted access by the role. If all tables exist

as children, the query validation continues. If not, then the query is invalid the operation

stops.

The next step is to check whether a child or children of the table node exist for the

tablefields that the user wishes to view or change. If the tablefields are present within the

 15

role, then the desired operation (e.g., read) is checked for permission. If the operation is

not present, then the query is invalid, and the operation stops. Finally, any defined

conditions for the tablefield are checked to ensure that the required restrictions are

included in the query.

In the described process, an invalid query is blocked in the shortest number of

steps, while a valid query must be checked all the way down to the leaves. While this

may seem unwieldy, it provides the necessary method to invalidate all queries unless

specifically allowed.

In a large database with many tables, the tree could become very large if all tables

and fields are included as children. To preclude this, an ‘ALL’ child could be included

within the tree structure. Then if a role has read access on all the tables of the database,

the database node would have an ALL child that would represent all of the tables of the

database, and the table node would have a subsequent ALL child at the next level to

represent all of the tablefields of the table. This ALL child would have the read operation

as its child. This would allow for shorter verification searches for roles that have been

given widespread privileges.

E. PROCESS
The overall process for the JDRBAC application can be broken down into the

following steps (see figure 10):

1. User Creation of Query

The first step will be a user interface that will enable the development of the

query from the user input. The user can select data fields, and what operation to perform

on those fields. The application can provide all of the possible fields for the user to select

from, or limit the display to those fields that are available to the user via the role of that

user.

 2. Query Validation
At this point the RBAC policy implementation will take place. The query will be

validated via the step-by-step approach detailed previously, and an invalid query will

produce an indication to the user via the interface.

 16

4. Display of Results

3. Query Execution

2. Query Validation

1. User Creation of
Query

3. Query
The applicati

datafields. The datab

combined as necessa

4. Displa

The result of

appropriate manner.

In this thesis

preceding list of oper

of the JDRBAC is ba

adapted to the tree st

and flexible applicati

access controls, user

Figure 10. JDRBAC process
 Execution
on will access the required database or databases for the requested

ase access will be done via secure channels, and the results will be

ry into a single comprehensive result.

y of Results

the user query will be presented on the user’s web page in an

we describe a prototype that we developed to implement the

ations, with the necessary web/database application. Our prototype

sed on the Java-based RBAC implementation developed by NIST,

ructure described in Chapter III. Our intent is to create an effective

on that can be easily fielded in any situation, providing necessary

functionality, and levels of security in its operation.

17

THIS PAGE INTENTIONALLY LEFT BLANK

 18

III. DESIGN

A. REQUIREMENTS ANALYSIS
The JDRBAC implementation, as previously discussed, is to be used in a

distributed environment. The application needs to support the following transparencies:

access, location, concurrency, and mobility. These transparencies allow users to pull

information from one or more databases that could be developed on different database

management system technologies. In this thesis, the application architecture comprises

two high-level sets of modules (see figure 11), each of which will be examined in more

detail later. The first set is an RBAC policy implementation that will function similar to a

reference-validation mechanism. It will be consistently invoked to validate the users’

actions against their roles and permissions. The second set of modules will be the web-

application of the functionality supporting the access and use of the distributed databases.

This application will use the RBAC policy implementation to validate the user queries in

a step-by-step fashion. The communications between the two modules are of two

fundamental types. The first type, explicit and user-driven, are method calls for the

purpose of checking the user action against policy and returning the result. The second

type, implicit or event-driven, are method calls that constantly check the validity and

consistency between the user actions and the user’s roles and permissions in the time

domain. These can be local or remote method invocations.

Standard Web
Application Interface

RBAC Policy
 Implementation

JDRBAC

Figure 11. JDRBAC Architecture
19

The web application under consideration has to meet several requirements, which

include the following:

1. Security
 The web application provides role-based access control security that is defined by

relationships among users, represented in the JDRBAC tree. Moreover, the application

will provide a user identification and authentication module that will be used in the login

process. Additional security, such as a firewall, an application gateway, encryption or

secure sockets layer, can be used to provide defense in depth for the entire application

environment. The implementation of such security mechanisms is beyond the scope of

this thesis.

 2. Platform Independence
 One of the fundamental motivations for the implementation of JDRBAC is

platform independence. Among the primary problems encountered by enterprises is the

integration of their systems in a distributed environment, and satisfying the need for a

global context in the information systems. The enterprise is typically in possession of

legacy systems and new systems that utilize different operating systems and a variety of

database management systems. Therefore, there is a need for applications to

accommodate such heterogeneity, and be able to interface to the existing databases of

various enterprises.

3. Access Transparency

The manipulation of multiple enterprise data requires skilled operators and

personnel who know how to query the databases and how to store relevant information. It

is typically essential for these personnel to be proficient in some data manipulation

language (e.g., SQL) in order to query or update the databases. The JDRBAC

implementation will provide access transparency so that users can manipulate the data

from remote databases without the specific knowledge of any querying language: they

will use a standard interface.

4. Flexibility

 The JDRBAC application will consist of modules that have strong coherence and

weak cohesion. The modular approach allows for having an adaptable architecture that

 20

can be readily tailored and tested to address the evolving requirements and missions of

the various enterprises involved. Application portability allows for the consolidation and

integration of proprietary systems in a computer-support for collaborative work (CSCW)

environment.

5. Ease of Management
The neutrality of the RBAC policy stems from its ability to be applied to any

given enterprise environment. Its nature allows for the definition of generic user-role and

role-permissions relationships that, in turn, can be used in the management of

authorizations. This is especially desirable for enterprises intending to consolidate their

efforts in a CSCW environment.

6. Cost Effective
The implementation of the RBAC policy, in theory, could minimize the overhead

associated with maintaining an access-control policy.

B. USER INTERACTION PROCESS
The JDRBAC application will interface with two types of users, the common user

who accesses data, and the administrative user who maintains the application. While the

common users will have their access controlled by the JDRBAC tree, the administrative

user can view and modify the entire JDRBAC tree.

In order to update the JDRBAC tree, the administrative user will be provided an

interface to view the entire tree structure, from which the user can select specific nodes to

perform operations on. In this sense, the interface will be similar to the one provided to

the common user, with the significant addition of being able to view the entire database

of objects that are provided to the application. In the case of adding database objects to

the tree, there will need to be a separate channel for the administrator to obtain

information about such objects from an authorized database administrator. This is

because the JDRBAC application itself will need to be provided access to such objects

via a database administrator before they can be added to the JDRBAC tree.

In the case of the common user, the primary function will be to view data on a

read-only basis. The ability to add or delete objects from the database will not be

provided to a JDRBAC user. In order to achieve the primary goal of eliminating the need

 21

for every user to have an account on every database accessed, only the JDRBAC

application will be provided an account, and will provide partitioning of its access to the

application users. So application users are essentially anonymous to the databases, and it

is undesirable to provide anonymous users with the ability to directly affect the structure

of a database. Such operations will be reserved for database users who are specifically

authorized to perform such actions, that is, “trusted users.”

The ability of common users to edit data held within the database provides

advantages, and presents problems. Most implementations of JDRBAC will likely be

created to provide only the read access to data. Allowing users to edit existing data raises

the issue of concurrency control. If two or more users are accessing the same data at the

same time, and all have the ability to edit that data, then which changes should take

precedence when the users commit them is vital to maintaining a consistent database

state. The problem is made even more complex with the addition of users who are

accessing the data directly as authorized database users, the “trusted users” previously

noted. Maintaining currency transparency (i.e., hiding multiple accesses to shared

resources from the users) is possible through mechanisms introduced in the database,

since the JDRBAC application is seen as simply an authorized user accessing the

database. However, the inclusion of the means to provide such transparency, via such

things as transaction controls, to the users of the JDRBAC application is beyond the

scope of this thesis. Such cases can be reduced by limiting edit (i.e., the changing of

existing data) or write (i.e., the entering of data into a previously empty field) operations

on specific data to only one specific user (e.g., in the case of a user’s own personal data),

but tailoring access to a specific user runs contrary to the notion of RBAC policy.

But some implementations, such as those providing access to personnel databases,

or user account information, could be set up to allow users to access and edit their

personal data. In order to address such cases, the JDRBAC application incorporates the

write (i.e., entering data into a previously empty field), and edit (i.e., changing data

currently existing in a tablefield) operations into the design and implementation

description of the JDRBAC application. Issues such as concurrency control are left to

future research.

 22

Within the parameters of the allowed operations, the step-by-step process of

common user interaction with the application is defined in the following steps:

1. Login – Authentication (JDRBAC policy implementation)

The user enters the appropriate login identification and password, which is

verified via a module contained within the RBAC policy implementation. The

table will hold the user identification, the password for that user, and the role or

roles that have been assigned to the user. The login process is necessary to ensure

that users are associated with the proper roles.

2. Present possible roles (JDRBAC tree)

Once the user has been authenticated and associated with a role or roles, the roles

will be displayed to allow for user selection. Because roles can have different

accesses associated with them, distinct roles may conflict with one another in

terms of permissions. This is due to the activation structure of the RBAC policy,

rather than a hierarchical structure.

3. User selects roles

The user will select the role or roles based on the specific data that is to be viewed

or edited.

4. Present all databases available for roles (JDRBAC tree)

The application will search the JDRBAC tree structure to determine the databases

associated with the roles. These databases are the children of the role nodes

within the JDRBAC tree structure.

5. User selects databases

 The user will select from the displayed databases to access the desired data.

6. Present tables from selected databases (JDRBAC tree)

 The application will search the JDRBAC tree (specifically, the children of the

database nodes) to obtain the tables associated with the selected databases.

7. User selects tables for view formulation

 The user will select the specific tables for which access is desired.

8. Present tablefields from selected tables (JDRBAC tree)

 23

 The application will search the JDRBAC tree (specifically, the children of the

table nodes) to obtain the tablefields within those tables for which the user’s role

has been granted access.

9. User selects tablefields for the view

 The user will select the specific tablefields that contain the desired data.

10. User selects operation to be performed on data (read, write, edit) (JDRBAC tree)

 The user selects the desired operation for those displayed. The operations

displayed will be taken from the JDRBAC tree, as the operations allowed on the

tablefields for the role or roles of the user. The restrictions on available

operations have been previously discussed, as well as the potential issues

associated with the edit and write operations.

11. Application accesses databases for data (Query Builder/Query Execution)

 At this point, the application can create an SQL-form query for the user

selections. The application can then execute the query on the appropriate

databases to retrieve the necessary data.

12. If read operation is selected, then the application presents data to user

 If the user has selected to read the data, the results of the query are presented in an

appropriate format for the user to view.

13(a). If write or edit operation selected, form presented for user to write/edit data

If the user has chosen to edit data or enter new data, an appropriate form is

displayed for the user to view the existing data (if any). The user can then fill in

any blank fields in the records (write) or change existing data in the records (edit).

13(b). Application commits data to database

If changes have been made to the data presented to the user via an edit or write

operation, then a SQL form query will be created to enter the new data into the

database, and commit the required changes.

C. JDRBAC TREE DESIGN
The RBAC policy implementation will consist primarily of three modules: one for

interaction with the JDRBAC tree, one for user validation, and one for accessing the

 24

associated database. An additional module may be needed for aliasing. Aliasing would

be required to provide user-friendly descriptions of otherwise obtusely-named database

objects. Translation of interface descriptions to actual object names will need to be done

to enable the construction of well-formed queries.

The user validation module will simply provide a means to validate the user

identification and password at login, and associate the user with the role or roles to which

they are assigned. The implementation of this module can be done with a simple table

containing the user identification, password, and all roles that the user has been assigned.

The JDRBAC tree will be implemented in a module that will require two distinct

interfaces. One will be for user operations, where the application will access the tree to

search for the objects to which the user has been granted access. The second interface

will be for administration, to allow for an authorized user to update, create, or delete roles

from the tree.

The design of the tree will focus on user operations, as the likelihood is that

multiple users will access the application simultaneously. There is a need to make search

operations efficient during user operations, in order to provide necessary levels of speed

in presenting data. The interface can be adapted to provide the necessary views for the

administrative users.

 Each level of the tree consists of a different level of access provided to the role,

and thereby to the user. The number of children of each node of the tree can vary. For

instance, there can be any number of roles defined, a role can have access to a number of

databases, and a database can consist of several tables.

For a user process, it is necessary to access and present all children of a given

node to the user. When the user selects a given node or nodes (be they databases, tables,

tablefields, etc.), the operation is repeated. So the optimal design of the tree structure

should allow for ease of searching on a particular level of the tree, specifically the

children of a given node.

 25

. . .

. . .

. . . .

. . .

. . .

Conditional Conditional

OperationOperation

TablefieldTablefield

TableTable

Database Database

Role Role

JDRBAC Tree

. . .

In this regard, the children of a particular node can be considered peers of one

another. The databases that can be accessed by a specific role are peers, and the tables of

a particular database of that role are also peers. Thus each element of the tree must be

able to reference both its children and its peers on the same level.

An effective means of representing the JDRBAC tree is in the use of linked lists,

with each node of the tree containing the necessary data, a child pointer, and a peer

pointer:

Peer
Pointer

Child
Pointer

Node Data

Figure 13. JDRBAC Tree node
Figure 12. JDRBAC Tree
26

The node data would provide the type of object that it represents (e.g., database,

table, tablefield), the descriptive name of the object, and any other required items. The

pointer would be set to null, or to the associated child or peer node. The root node would

have a peer pointer set to null, and its child pointer set to point to the first child. The first

child would point to the next child with its peer pointer, with the rest of the children

linked in the same way. Each node would have its child pointer pointing to its children,

and so on. An example of the resulting tree, for the databases, tables, and tablefields of a

given role, would be as shown in figure 14.

Role

Database1 Database2 Database3

Table 1 Table 2 Table 3 Table 4

TableField 1 TableField 1 TableField 2 TableField 3

D. APPLICATIO
To satisfy the n

requirements analysis p

Figure 14. Example of a JDRBAC Tree
N DESIGN
eeds of the application and the requirements stated in the

hase, the application can be composed of four modules (see figure

27

15). The correct use of the application depends on how each module is developed, and on

how well the modules are integrated and communicate together. The four modules are

given below.

User

Login

Role Based Access Control Policy Implementation
(Reference Validation Mechanism)

I & A
(user login)

Commit
 Changes

Edit Form
For

Changes

Result
 Display

Query
Execution

Query
Building

 Temporal Validity Mechanism

Select
Field(s)

Select
Table(s)

Select
Database(s)

Select
Operation

Role
Selection

Figure 15. JDRBAC application architecture

1. Identification and Authentication
The identification and authentication module can be used to enforce the security

policy of the application. The users have to supply the correct credentials to be able to

utilize the system. They will be provided a maximum of three attempts to log into the

application; otherwise the system will lock out the user from the application until the

administrator re-establishes access for that user. The identification and authentication

module will enforce proper standards of protection for the usernames and passwords, in

terms of password alphanumeric composition and length, unique user identifications, and

time limits for account validity.

 28

2. Role based access control policy implementation

This module represents the implementation of the RBAC policy and controls the

delivery of the information to authorized users. It is in the kernel of the JDRBAC

application where the actions of the users are validated against the active role or set of

roles selected when logging into the system.

The application presents only the information the users are allowed to see. The

enforcement of the RBAC policy applies down to the level of granularity specified by the

lowest level of the JDRBAC tree structure. Therefore, on every step of the user process

the system provides only the data to which the user is granted permission; this will

prevent unauthorized disclosure of information. The design of this module consists of the

implementation of a tree structure that defines the user-roles and role-permissions

relationships, and the hierarchies between the roles. The model accounts for dynamic

changes in the authorization state and constantly re-evaluates the user’s role or roles to

ensure a consistent state of currently authorized access during the user process. The bi-

directional arrows between the web application and the role-based access control policy

implementation (see figure 15) indicate that a user request (for data) is forwarded from

the web application to the RBAC implementation, which processes it, in conformance

with the set of rules and permissions that are active at that time, and sends back the

results (i.e., the desired data) to the user.

 3. Temporal Validation Mechanism

Recently, Bertino, Bonatti and Ferrari introduced Temporal Role Based Access

Control (TRBAC). The basic idea of the TRBAC relies in the fact that roles can be active

in certain periods and non-active at others. Moreover, there can be activation

dependencies among roles. Roles and relative permissions can also be revoked

dynamically, while the users are actively involved in a session. Therefore, the system has

to take appropriate action to dynamically isolate the user from the roles or part of the

roles in the most appropriate manner and in a way to prevent unintentional corruption or

unauthorized disclosure of the data in a case of a change in the user role assignment.

In theory, the temporal validation mechanism has to detect any change in the

initial set of user-role-permissions assignments and trigger the correct actions. If the

 29

temporal validation mechanism detects a change in the RBAC policy that affects the

current access restrictions of the user process, it triggers the system to examine all of the

previous steps in the process, return to a consistent state or disconnect the user from its

role in case of role revocation. The design and implementation of the temporal validation

mechanism is beyond the scope of this thesis and is left for future work.

4. JDRBAC Web application
The JDRBAC web application is a standard application that is platform

independent and adaptable. The application is intended to operate in a distributed

environment and to provide access to heterogeneous databases.

The connection to the various databases is kept transparent to the user and is

mediated through the use of a database connectivity function that is supported by most of

today’s database management systems. Moreover, the users are not required to have

different accounts on every database management system to be able to access the data.

Rather, it is sufficient that the web application has only one account on each system, and

the users get the access though the roles that are assigned to them. This demonstrates the

potential benefits of the application of the RBAC policy on a distributed environment in

the management of the user accounts and the relative permissions.

 The web application is composed of sub models that implement the user process.

It is designed following an object-oriented approach that facilitates the creation of the sub

models, their integration, and the application deployment on multiple platforms. The

architecture of the application (see figure 15) is an analog to the tree structure that is used

to define the RBAC policy.

The application supports the simultaneous activation of more than one role at a

time and allows multiple selections of databases, tables, and tablefields. Allowing

multiple fields selection creates the problem of congruency of the permitted operations on

the selected field, because the user can have read access to all the fields but write access

to only some of them. Therefore there will be the need to inform the users that certain

actions cannot be executed because they are not allowed by the set of permissions for the

specific role.

 30

At the end of the user process, the system builds the query for the user and

executes it. If the result is to be displayed, the system will display only the information

that the user is cleared for, but if the operation is to write to the database or databases

there will be the need to have different forms for different databases generated by the

system to enable the modification.

Finally, the last step in the user process is either to display the results or to

commit the changes to the databases. This step is done only after a final check by the

temporal validation mechanism that indicates the validity of the user action, at that time,

within the active set of roles and permissions. If the temporal validation mechanism

detects a change in the authorization state the action is aborted and the user has to login

again to the application and get the most current roles and relative permissions.

 31

THIS PAGE INTENTIONALLY LEFT BLANK

 32

IV. JDRBAC APPLICATION DEVELOPMENT

A. INTRODUCTION
This chapter describes the design and creation of a Java-based prototype

application for an RBAC policy that is applied across multiple database management

systems. The intent of the prototype is to provide a proof of concept for Java Database

Role-Based Access Control (JDRBAC). The prototype provides a working model and a

foundation for future development of a practical application of an independent RBAC

policy across loosely coupled databases.

B. TASK DEFINITION

The initial step in the development of the application was to define the distinct

tasks that are to be performed, and determine the integration points for the separate tasks.

It was determined that there existed five primary tasks that the application was to

perform. These tasks are as follows:

1. Login – Each user must be required to authenticate themselves to the application

via a user identification string and a password. This serves to as a means to

restrict access to authorized users, and as a way to identify each user to allow for

correct association of that user’s assigned roles.

2. Interface – Once the user has logged into the application, an interface will be

provided, displaying the appropriate data objects (database, tables, etc.) for the

role or roles that the user has been assigned. The interface provides functionality

for the user to select what data they wish to view, and submit their selection for

retrieval from specific databases.

3. JDRBAC Tree Structure – When the application is launched, it will be necessary

for the JDRBAC tree to be created in memory. This linked list structure will

provide a ready representation of the RBAC policy that the application will

enforce, without having to repeatedly access static memory. It will provide for

search and retrieval of the composites of each role, so the interface can easily and

quickly display the appropriate selections for each user.

 33

4. Database Queries – Once the user has selected the data for retrieval, the necessary

queries must be formulated and formatted, and performed on the proper databases

to obtain the required data. The data must then be displayed for the user.

5. Reference – There must be a means of static storage of the information that is

required by the application. This information includes the identification and

passwords of all authorized users, and the role parameters of the RBAC policy.

There must be a means to allow for other tasks (Login and JDRBAC Tree

Structure) to access this data as required for their operation.

The generic operation of the application can be described as follows: The application

is started, and the JDRBAC Tree is constructed from the reference data. A login prompt

is displayed, and the user enters the appropriate identification and password. This

information is verified with the parameters stored in the reference data. Upon user

validation, the user interface is displayed, based on the current set of roles associated with

that user. The role information is obtained from the JDRBAC tree structure. Once the

user has made their selections on the interface, the necessary queries are performed on

the appropriate databases, and the requested data is displayed for the user. The query

process is repeated as required by the user.

The tasks and their interconnectivity are shown in the following diagram (figure 16):

DATA
REFERENCE

JDRBAC
TREE

DATABASE
QUERIES

LOGIN

INTERFACE

Figure 16. JDRBAC application tasks
34

One additional task was identified that was distinct and separate from the

application itself. There must be a means for an administrator to act on the reference

data. The necessary operations include the adding, deletion, or modification of roles, the

association of users to roles, and the adding or removal of user login parameters. Because

the actual administration of the reference data depends on the choice of the mechanism

for storing that data, the manager task is directly related to the implementation of the

application. A more detailed description of the manager interface will be included in

chapter five, in conjunction with the description of the reference data storage.

 C. CODE DEVELOPMENT
 In keeping with an object-oriented design, each identified task was implemented

in a separate Java class. This approach allowed for ease of development and testing of

the code, as well as enabling the interface and the display of the query results to be

tailored as desired without affecting the other modules.

 To ensure low coupling with the application, each module was coded and tested

independently. Once the proper operation was verified, the methods to interact with the

other modules were included.

 The remainder of this section consists of a description of the development of each

module of the application:

1. Login
The Login module was coded to provide a pop-up window (figure 17) that

provides the user fields to enter the user identification and password.

 Figure 17. Login window

 35

The window provides a status field to indicate incorrect entries and failed login

attempts. An arbitrary number of login attempts, three, are allowed before the window

closes and the application exits.

The login module passes the user ID and password strings to the reference module

for validation. Once validated, it holds the user ID for access by the Interface module,

and the login window is no longer displayed.

2. Interface

The interface window

to display two main areas. O

expanded to show the role or

module, and the roles of that

further be expanded to displa

the specific database, and the

displayed are obtained from

Figure 18. Interface window

 (figure 18) was designed, for the purposes of the prototype,

n the left is a display showing the user name, which can be

 roles of the user. The user name is obtained from the login

 user from the Reference module. The left display can

y to accessible databases of the role, the tables available in

 tablefields of that table. The particular nodes that are

the JDRBAC Tree Structure module, where the

36

representation of the RBAC policy is held in memory. The allowable operations (read or

write) on each tablefield appear at the far left. The operations are only enabled when the

user has selected a tablefield, and are not enabled when any other item is selected. At the

bottom left of the window is a select button which, when a tablefield is highlighted,

records the selection on the second main area on the right. There is also a clear button to

remove the selection from the right display. Below the right display is a submit button.

When the user has made a selection, clicking that button sends the parameters to the

Database Queries module for data retrieval.

The selection of a tree structure on the interface was intended to mimic the linked-

list JDRBAC tree in memory, to provide a demonstration of the JDRBAC tree. In an

actual implementation the application could have any type of interface, including choices

displayed with check boxes, or multiple screens.

The interface module was designed to contain the main method for the

application. When the application is launched, the interface will call the appropriate

methods to create an instance of the JDRBAC tree in memory, and instances of the other

modules for the operation of the program.

3. JDRBAC Tree Structure
The JDRBAC tree is created in memory to provide a readily accessible means to

access the RBAC policy representation. This was designed as a linked list structure that

is created recursively through calls to the Reference module. The root of the tree is an

arbitrary “JDRBAC” node. The first set of children are the defined roles, whose children

are the databases associated with that role, whose children are the specific tables of that

database, etc. The entire RBAC policy is represented in the JDRBAC tree. This has the

advantage of preventing repeated calls to static memory via the Reference module.

Methods are included in the Tree module to enable searching of the tree for

certain children. For example, given a role, the databases of that role are returned, given

a role and a database of that role, the available tables of the database for that role are

returned.

The creation of the JDRBAC tree allows for the entire RBAC policy to reside in

memory, rather than requiring repeated calls to static memory.

 37

4. Database Queries

This module was created to perform the queries to obtain the data requested by

the user. It creates the Java Database Connectivity (JDBC) connections to the necessary

database, and then executes the required query on that database. After completion of the

processing of the returned data, the module creates a window for the display of the results

(See figure 19).

5. Referen
The Reference

primary function is to p

application is shut dow

been sufficient, it was

simplify the administra

implementation of the

with the code was dete

source applications, the

HSQLDB database ope

Figure 19. Result display window
ce
module maintains the application data in long-term memory. The

rovide a means for storage of the RBAC policy when the

n. Although any number of means to store the data would have

decided to utilize a database for storage of the data in order to

tion of the reference information. In keeping with the Java

application, a pure Java database that could be directly integrated

rmined to be the best choice. After evaluating a number of open

 small footprint, pure Java database created by the Hypersonic

n source project (the Hypersonic SQL Group coordinated through

38

the SourceForge.net web site) was selected. Further discussion of the Java database that

was utilized is in the following chapter on implementation.

 39

THIS PAGE INTENTIONALLY LEFT BLANK

 40

V. JDRBAC APPLICATION IMPLEMENTATION

A. INTRODUCTION
This chapter discusses the procedures for specializing (or tailoring) the JDRBAC

application to address a particular problem. The primary step is the decision process for

developing the RBAC policy that the application will enforce. A clear understanding of

the access controls required is essential for an effective use of the JDRBAC application.

The chapter will also provide a detailed discussion of the Hypersonic HSQLDB

pure Java database that was selected for the reference data storage, as well as the

additional functionality and implementation options that the Hypersonic database

provides.

B. UDERSTANDING THE RBAC POLICY OF THE APPLICATION
To fully take advantage of an automated implementation of the role-based access

control policy that the application enforces, the application administrators need to

understand the role-based access control policy models and rules. In particular, they

should be able to view (or inspect) application structural charts as a set of relationships

that tie each user to the task he is performing and each task description to the set of

authorizations and permissions that the user can perform to accomplish his duties.

The advantage of managing access-control policy via JDRBAC is that the level of

granularity and precision of the permissions can be refined to the full extent to regulate

all types of access to the application data. Our prototype allows for controlling the access

to the data based on the need to know of every specific user assuming a specific role.

Additionally, the administrators need to select a role-based access control model that is

appropriate for the application. For example, if there is need to completely separate the

tasks performed by two different users in two different roles either statically or

dynamically; the administrator should select the model that enforces the static separation

of duties (SSD) or the dynamic separation of duties (DSD). Moreover, the application

administrators need to define the role hierarchies and the role cardinalities based on the

RBAC policy or on the actual way the tasks are being performed. This would allow for

effective authorizations management and at the same time enforce an active security

 41

mechanism that prevents abuse or misuse of the application resources. A clear, a priori

understanding of the role-based access control policy model to implement, the rules and

terminology, and the definition of a high level description of the application policy are

prerequisites for being able to use the JDRBAC in an effective manner.

C. MAPPING THE APPLICATION POLICY
The high-level description of the JDRBAC application policy is a set of rules and

constraints that provide a definition of the relationships between roles, resources and

permissions. The next step is to map this high-level description into a data structure that

is able to store all the possible authorizations. This step is composed of the following

tasks:

• Identify all users: The administrator needs to have a list of all users of the

application. The users do not have to belong to the same organization.

• Assign identification and authentication credentials: The administrator

needs to assign a username that uniquely identifies the user to the application

and an initial password that authenticates that user. The user, on the first login,

can change the password, but the username remains fixed. The administrator

has to follow the rules and guidance of a good identification and

authentication policy in the assignment of the identification credentials.

• Assign users to roles: The administrator has to assign the users to roles to

reflect the actual application policy. During the user-role assignment the

administrator has to consider the role hierarchies and the cardinality of each

role to detect and correct errors.

• Define the role-database relationships: The definition of a relationship

between a role and a database requires that the users assuming the role are

allowed access to the database in the relationship. Each relationship is an

authorization that certifies that the role is globally authorized to access the

information in the database. The absence of such a relationship means that no

access can be provided to the user. At this step compartmentization and need-

to-know policy can be enforced.

 42

• Determine the role-database-tables relationships: At this point the

administrator needs to define the tables of every database that a specific role is

allowed to access. Even from this step we can see how the JDRBAC policy

implementation allows for more granular authorization enforcement. This

differs from database management systems that are based on discretionary

access-control policy enforcement, and that allow access to all or nothing. The

absence of a certain relationship means that the role is not allowed to access

the data that is stored in the tables of the database. Moreover, the

administrator has a tool to define the access to multiple databases in a

distributive context.

• Determine the role-table-tablefields relationships: The next level of

granularity of authorizations that the JDRBAC policy implementation

enforces is the definition of the tablefields that the role is authorized to access

within the parent table. The size of the set of relationships can grow

dramatically if the tables have many tablefields, but a modular design of the

database and a systematic approach would alleviate the authorizations

management burden.

• Define the role-tablefields-operations: Finally, the last level of granularity

consists of the administrator defining the operations that a specific user can

exercise on a specific tablefield of the database. The operations that are valid

in the application are the “read,” in which the user can have access to the

value of the data in the tablefield; the “write,” in which the user can change

the value of the data in the tablefield without having the authorization to see

it, or the “read & write,” in which the user reads the value in the tablefield and

changes it.

D. STORAGE OF THE JDRBAC REFERENCE DATA
The sets of the previously described relationships form the core of the role-based

access control policy implementation. Within the JDRBAC application, the RBAC policy

is actualized in memory within the JDRBAC tree structure. When the application itself is

not running, there is a requirement for an optimal way for the administrator to store the

 43

application JDRBAC policy. One solution is to create a database, although storage could

be done by text files or other types of storage. Choosing a database for the reference data

storage provides for an easier means to administer the stored information.

Given the option of creating a database for the reference data, the administrator

needs to select the correct database management system in which to implement the

authorizations database. In light of the Java-based application, the best choice for

integration with the application would be to consider a pure Java database that would

hold the small authorization database. There are a number of such databases available via

open source. After some evaluation, it was decided to use the Java database developed by

the Hypersonic HSQLDB open source project found at SourceForge.net. The following is

a brief description of the Hypersonic database.

1. Hypersonic SQL/ HSQLDB:
The Hypersonic SQL/HSQLDB is an open source Java database engine. It is a

general-purpose relational database that can be used as an applet or as a distributed

application. It is a very small and easy to install database originally intended for use on

handheld devices. The Hypersonic SQL/HSQLDB has a standard SQL syntax that an

administrator is required to know in order to manage the database. Additionally, it has a

Java-Database Connectivity (JDBC) interface that supports the creation of connections to

other vendor’s databases.

The database is simple and compact, which makes it suitable for the JDRBAC

policy storage. Moreover, it can be used either in standalone mode or in client-server

architecture.

The Hypersonic SQL/HSQLDB database has a built-in security system that

manages user names, passwords, and access rights. There exists by default a 'System

Administrator' with the user name 'sa' and an empty password. This special user can

create new users, drop users, and grant and revoke access rights for tables to other users.

E. DESIGN OF THE RBAC POLICY REFERENCE DATA
Having selected a database management system that will store the RBAC policy

the application administrator has to design the authorization database. In particular, this

step consists of defining the metadata (or the schema) of the database. Next, the

 44

administrator has to define the primary keys, the foreign keys, and the index tables in a

way that supports requirements for referential integrity and guarantees the best

performance and normalization of the database.

The administrator can use the standard SQL syntax or scripts to create the

authorization database. A screen snapshot of the java interface, as developed by the

Hypersonic SQL Group, of the Hypersonic SQL database manager is shown in figure 20.

When u

launch the serv

needs to execut

credentials and

the case shown

connected using

Figure 20. Administrator interface

sing the Hypersonic database in the client-server mode, the first step is to

er by executing a batch file named “runServer.bat”. Next the administrator

e a second program, which is “runManager.bat”, and provide the correct

 JDBC driver to connect to the database and run the database manager. In

, the server and the client are on the same machine; therefore we

 the “://localhost” URL.

45

After creating the database schema, the administrator has to input all the data in

the tables to reflect the RBAC policy of the JDRBAC application. Finally, the

administrator can prepare Java methods that query the Java database and return results to

other calling programs. The list of these methods is given in table 1:

Method Description

validateUser(username, password) Returns true if the user is identified and
authenticated

getRoles(username) Returns a vector of roles that the user can
assume

getDatabase(role) Returns a vector of all possible databases
that the user is allowed to access

getTables(role,database) Returns a vector of the tables of the
database that the role is allowed to access

getTableFields(role, database, table) Returns a vector containing the allowed
tablefields

getTablefieldOperation(role, tablefield) Returns a vector of the operations that the
user assuming that role is allowed to
perform on the tablefield.

TABLE 1. Query methods

F. THE ADMINISTRATOR INTERFACE

The drawback in building the reference data using the hypersonic database is the

requirement for the administrator to have an understanding of SQL. Moreover, the

management of the reference data requires extensive operations to accomplish even the

simplest tasks. To alleviate the authorizations management burden and to improve the

correctness of the reference data, an additional interface has been created. This interface

allows the application administrator to manage the sets of users, roles, resources, and

grant or revoke authorizations. Figure 21 is a screen snapshot of the administrator

interface that shows the operation of assigning a user to a role.

 46

Such operation would otherwise need the supply of an SQL statement in the

Hypersonic administrator interface.

The administrativ

database. But the code w

another one be used for t

different Java connectivi

intuitive management me

policy development follo

G. TESTING
There are many w

the database. For exampl

the results. Another way

policy implementation. T

database or in the actual

 Figure 21. Application administrator interface

e interface was developed for interaction with the Hypersonic

as written to allow for connectivity to other databases, should

he reference data storage. By modifying the code to reflect

ty parameters, the interface can be used to provide a simple,

chanism for any other database. This assumes that the RBAC

ws the previously outlined procedures.

ays that the database administrator can ensure the correctness of

e, the administrator can use SQL queries to check the validity of

 is to write a Java program that tests the validity of the RBAC

he testing phase is needed in order to detect errors in the

RBAC policy design and to prevent damage from erroneous

47

policy that could result in untended flows of data (i.e., those flows that are contrary to the

policy that is supposed to be enforced).

H. ADDITIONAL FUNCTIONALITY
The RBAC policy of the JDRBAC application is represented by the linked-list

tree structure within the application. The tree holds the entire RBAC policy, which

alleviates the need to consistently make calls to static memory during the operation of the

JDRBAC application.

The choice of a pure Java database for storage of the RBAC policy reference data

allows for the database to be stored in memory during application operation. In this

sense, the database provides redundancy to the JDRBAC tree. This provides additional

flexibility in implementing the application. The JDRBAC tree structure would not be

required to store the entire RBAC policy, but could be tailored to store only the portion of

the RBAC policy that applies to the current user. When the user logs in to the

application, an instance of the JDRBAC tree can be created for that user based on the

reference data stored in the Java database. This would reduce the level of computer

resources required for operation of the application, and provides a means for improving

performance of the application.

 48

VI. SECURITY

A. INTRODUCTION

Security of the data flows is a primary concern when fielding the JDRBAC

application in a real-world situation. It makes little sense to attempt to enforce an access

control policy if the data is passed in the clear, where unauthorized sources can intercept

and collect the data. Therefore, some form of security mechanism is necessary to provide

appropriate levels of confidentiality and integrity for the data being processed by the

JDRBAC application.

B. DISCUSSION
In a real-world situation, the data channels between the users and the application,

and between the application and the databases, will likely be across the Internet (figure

22). As these channels are exposed to unauthorized monitoring, it will be necessary to

incorporate encryption of the data to provide minimal levels of security. As part of the

application development, a number of possible methods were examined to integrate the

encryption mechanisms into the JDRBAC application.

JDRBAC
Application

Databases

 InternetUser

Figure 22. Application deployment

 49

C. CLIENT – APPLICATION SECURITY

For the data flows between the user and the application, the use of Secure Sockets

Layer (SSL) is the best choice (figure 23). This is due to the existing support for SSL

that is included in most web browsers. By using SSL, there is no need to additional

software or functionality to be provided to the users. SSL provides authentication and

data integrity, and can be used to secure communication between a web server hosting

the JDRBAC application and a web browser on the user’s computer. Sun’s Java Secure

SSL

JDRBAC
Application

Database

 InternetUser

Figure 23. Securing the application with SSL

Sockets Extension (JSSE) provides a freely distributed SSL implementation for

Java applications.

When SSL is used for encrypted connections via web servers, the client

authenticates the web server, while the web server allows any client to connect. In the

JDRBAC application, the user is authenticated by the user identification/password

combination in order to provide client validation. Should further client authorization be

desired, the JSSE can provide authentication via a valid certificate possessed by the user,

if such a public key infrastructure is available.

 50

D. DATABASE – APPLICATION SECURITY

The integration of encryption between the JDRBAC application and the various

databases that are accessed requires a more complex solution. Any encryption

mechanism introduced will require a means to encrypt and decrypt data at the application

and at the database.

One method involves the use of the Java Cryptography Architecture (JCA) and

the Java Cryptography Extension (JCE). The JCA and JCE were designed by Sun to

provide an implementation-independent Application Programming Interface (API) for

cryptographic functions in Java. The JCA provides message digests and digital

signatures, and the JCE adds support for ciphers such as DES, TripleDES, and Diffie-

Hellman.

The inclusion of the JCA and the JCE allow for the use of password-based

encryption between the application and the database (figure 24). In this method, the

application performs encryption of the database query using a shared static key, and

sends it to the database. A separate application then decrypts the information with the

same shared key. The separate application would then perform the query, encrypt the

results with the shared key, and return them to the original application.

Password-based
Encryption

SSL

JCE Client
Application

JDRBAC
Application

 Internet User

Database

Figure 24. Adding encryption

 51

There are issues that arise when using password-based encryption. First, there is

the need to have a separate password for each application-database connection, in order

to ensure that compromise of one password and the associated data channel does not

induce the same compromise of the other channels. The password stored for a particular

database would be at some risk of disclosure to unauthorized users. In addition, all of the

passwords would have to be stored on the server hosting the JDRBAC application,

inducing overhead within the application, and providing a central point of risk for the

compromise of all passwords.

Also, there is the requirement for a client application at the database to perform

the encryption and decryption. The administrators of the remote network where the

database resides may not be willing to accept the inclusion of such an application within

their networks, especially if it resides on the database server.

A second, potentially more desirable method, involves using the JSSE to perform

Remote Method Invocation (RMI) using SSL. In this case, a secure Java Database

Connectivity (JDBC) driver accepts the JDBC requests from the application, and

communicates with a secure JDBC server on the database using encryption to protect the

data. An illustration is the process is in figure 25.

While this SSL implementation can be performed directly from the server that is

hosting the JDRBAC application, for purposes of scalability and performance

improvement, a proxy server can act as middleware to perform the database connections

(figure 26). Whether or not to include a middleware element would depend on the

number of users that will access the JDRBAC application (particularly the number

accessing the application concurrently), and the number of databases to which the

JDRBAC application will interface.

 52

Database Machine

Database

Vendor JDBC
 Driver

JDBC Requests

Secure JDBC Driver

Secure JDBC Server

RMI over SSL

 JDBC Application
 Or Middleware

 Figure 25. Using JSSE to secure the application

 Figure 26. Use of a proxy server

SSL

Proxy/
Middleware

JDRBAC
Application

Database

 Internet
User

The method of RMI using SSL has the advantage of not requiring a static

password to be stored, since SSL uses a session key instead of a password. It also

 53

provides potential support for the use of certificates if a public key infrastructure is in

place.

Like password-based encryption, there is still the requirement for a separate

application to reside on the database side (in this case a secure JDBC server). But this is

unavoidable if encryption is to be performed on the data channel between the application

and the database.

A third solution would be to use a Virtual Private Network (VPN) solution to

secure the channel, but the expense of implementing such a solution makes it the least

desirable one.

E. DATABASE SECURITY
In addition to securing the channels of communication, there is the need to secure

the database itself. But since this is not part of the functionality of the JDRBAC

application, it will be left to the database administrators and their associated network

administrators to provide for sufficient security.

F. APPLICATION SECURITY
Finally, there is the need to provide for adequate security of the JDRBAC

application itself. Because the application will be processing data internally in the clear,

it is necessary to ensure that an unauthorized user does not gain access to the server

where the application resides and be able to collect and view data. It is therefore

important that the web server where the application resides be configured securely. Once

again, the configuration of the web server is beyond the scope of the JDRBAC

application functionality, and so will be left to the administrators responsible for the web

server (though they will in all likelihood be the same people responsible for the

installation of the JDRBAC application).

 54

VII. CASE STUDIES

A. INTRODUCTION
This chapter discusses three cases in which an application-level database RBAC

(DRBAC) solution can be applied, and for which the implementation of such a solution

may be more desirable or effective than the alternatives. The importance of these cases is

that they provide a validation of the concept presented in the thesis in real-world

situations, and they help to provide a focus for future research on RBAC.

B. DISCUSSION
The first case study is drawn from an article in the Wall Street Journal published

on November 13, 2001. This article describes the desire of health agencies and medical

personnel to view the inventory and sales tracking data of various pharmaceutical

companies. The health agencies’ main goal is to be able to identify spikes in the sales of

certain drugs, in that such higher-than-normal demand can be an indicator of potential

epidemics.

In this situation, the users (health agency and other medical personnel) have a

desire to view only certain subsets of the various databases. They do not need to search

the database, or view data beyond that which is associated with a certain drug or drugs

produced by certain pharmaceutical companies. So there are static subsets of information

that is of interest.

Due to privacy and security concerns, the direct integration of the databases, or

the consolidation of the data into a single DBMS, are not valid options. Competing

companies are not going to integrate their sales tracking or inventory data with each other

within a single DBMS. For the same reasons, a SAP or Tivoli type of solution is not a

likely option. Providing the users with individual accounts on the databases of interest

would create a great deal of overhead for the companies involved, and expose the

companies’ data to increasing levels of risk of unauthorized disclosures.

 An application such as DRBAC provides an alternative to the foregoing types of

solutions. The companies would provide a single account for the application, rather than

accounts for each user. The account would be restricted to specific information,

 55

providing a sense of assurance that users will not be able to exceed the desired

boundaries established. Moreover, the users are provided with a single point of access to

the desired information, rather than needing to access each company’s data separately.

The RBAC policy enforced by the application would not just restrict the access of

users, but provide a tangible benefit. Roles could be created for distinct drugs, and users

would be assigned roles based on the drugs they wished to track. This would allow for

the users to only view their data of interest, rather than having to search through all the

information for every drug represented through the application account access.

 A second case is a joint military operation involving a particular area of interest.

Such an operation would be of a limited time in duration, and can involve multiple

services, or multiple companies. The operation would be focused on a particular area of

interest. Examples of such operations would be joint exercises, Non-combatant

Evacuation Operations (NEOs), or humanitarian relief efforts. The operations may be

well-planned, or require support establishment in a short period of time.

 The data of the interest on the particular area (e.g. meteorological data, order of

battle data, and intelligence data) could be managed by distinct DBMSs. For an

operation of limited duration, the costs of creating a centralized database or implementing

a SAP-type of solution may be prohibitive. In addition, there may not be adequate time

for the creation of such solutions. In the case of a joint operation, directly integrating

databases from separate services (or from multiple countries) would not be economical or

not possible due to security concerns. In addition, time may still be an issue.

A database RBAC application provides the flexibility and ease of adaptation that

can make it useful in such environments. It provides access to multiple users across

multiple databases with relatively low overhead and cost. The need for a static subset of

data for the application to access precludes the use of dynamic searches of the databases,

which may restrict the application’s usefulness for tactical purposes. But for support

purposes, the application can provide for the required functionality.

The RBAC policy implementation of the application provides for access to be

partitioned based on need-to-know (e.g. by nationality: U.S, second party, or third party

allies) or by security clearance. Roles can be created based on the security level of the

 56

data to be accessed. The access control can also be based on the individual, unit or

command functions, with roles devised based on the tasks or missions that are to be

performed.

The single point of access to the various databases (via the application account)

allows for necessary security controls and restrictions to be put in place on each DBMS

to which the application is granted access. The user validation mechanism of the

application ensures that users will be restricted to specific accesses as negotiated by the

responsible parties (the DBMS owners, the application administrators, and other entities

with controlling interest or responsibilities). It also provides better user support in a data-

rich environment through consolidation of multiple sources of information. As user-

specified requirements change, the ability to add additional sources of information (in the

form of additional DBMSs accessed by the application) is also an asset.

The third case involves the current anti-terrorism environment that exists in the

United States. There is a need for security personnel (e.g. border patrol, immigration

agents, and airport security) to identify individuals with possible terrorist motives. The

information on such personnel is located on various databases (e.g. maintained by the

FBI, CIA, local law enforcement, INTERPOL). There is a need to enable personnel at

various points of entry into the United States with the ability to identify terrorist suspects

prior to their entry into the country.

One solution would involve the creation of a central database that will hold the

necessary information, with updates provided by the various law enforcement agencies.

But the expense and labor required for designing and maintaining such a centralized

DBMS is not necessary. The DRBAC application can provide the consolidation of the

access to the data within the various distinct law enforcement DBMS.

The agencies (FBI, CIA, etc.) can create key lists of suspects that should be

stopped, detained, or identified. The DRBAC application can be granted access to the

database tables that contain these keys lists. The tables themselves can be regularly

updated by the various agencies without the need to alter the application access that has

been given.

 57

Personnel at the entry points can access the DRBAC application via the Internet,

and check the identification of incoming travelers against the various lists. Roles can be

created based on the tasks of the various security personnel utilizing the DRBAC

application. Personnel first checking the identification can be provided the minimal data

(e.g. name, description, and photograph) to flag suspects. The suspects can then be

turned over to other security personnel for further investigation. These other personnel

can be given roles that allow for more detailed information from the various databases

(e.g. aliases, prior destinations, background) that will enable them to positively identify

and detain terrorist suspects. Additional roles can be created for police and highway

patrol throughout the country, to allow for them to check arrestees and traffic stops

against the key-suspect lists.

These scenarios provide only a few of the ways in which a DRBAC application

can be applied. The flexibility, low-cost, and ease of implementation make it a valuable

tool for situations in which the data is held on various distinct and distributed databases,

the subsets of data are well-defined, and the access to the data should be mediated by an

access control policy.

 58

VIII. CONCLUSIONS AND FUTURE WORK

Role-Based Access Control has gained acceptance in several information

technology areas. Although RBAC mechanisms have been incorporated in many database

management and operating systems, there is strong need for RBAC policy

implementations that are vendor neutral and platform independent, especially in a

massive distributed environment. In this thesis, the U.S. National Institute of Standards

and Technology (NIST) standard reference model was examined to present a foundation

for an RBAC policy implementation. In particular, the work of this thesis constitutes an

attempt to implement a Java Database Role-Based Access Control (JDRBAC) application

in a distributed environment. The distributed environment can be defined as one in which

databases span various enterprise boundaries and associated trust domains. The JDRBAC

application proposed in this thesis constitutes a model for enforcing role-based access

control on multiple loosely-coupled databases that can belong to different enterprises and

can be as heterogeneous as possible. The advantages of such an implementation are the

streamlining of the authorization-management process, the access transparency provided

to the users, the flexibility and adaptability of the application to many scenarios in which

high degrees of collaboration and rapid deployment are required, and the scalability and

interoperability offered by the application are important.

The JDRBAC application implements a general-purpose mechanism that is

platform independent and that will allow the negotiation of the user access to distributed

databases without the need to have pre-assigned accounts on any of the database servers.

It provides a higher level of control that allows for a higher degree of flexibility in the

administration of privileges. The application is composed of four modules. First is an

authentication and identification module that checks the user’s credentials and associates

a user with their respective roles. The second module represents the RBAC policy

implementation, modeled as a tree structure capable of storing the entire RBAC policy in

memory. The JDRBAC tree is created from reference data that is maintained in a pure

Java database. For the purpose of this thesis, an open source database (the Hypersonic

Hsqldb Database Engine) was used to model the set of authorizations and permissions for

every database access. The third module consists of the JDRBAC web application that

 59

permits the users to login and then submit queries on the information that they are

authorized and allowed by the activated roles. The last module is the temporal validation

mechanism that accounts for the temporal aspects of the application such as the activation

of multiple roles at the same time, the detection of change in the authorizations state

relative to the current user and the choice of dynamic actions in case of revocation or

policy change.

In the development of the prototype, the Java language was selected because it

allows for platform independence, flexibility, and modular approach, but such a prototype

could have been built using other languages such as ADA, or C++. The choice of the

programming language is not critical to the demonstration of the usefulness of the

JDRBAC implementation model.

The reference data allows the storage of the set of authorizations and permissions

maintained in the JDRBAC tree structure. The implementation of the reference data uses

an open source prototype entirely developed in Java by the Hypersonic HSQLDB

database open source project coordinated through the SourceForge.net web site. The

choice of this product is not vital for the JDRBAC application, but provides an excellent

implementation based on a specific vendor DBMS. Ordinarily, to use the database, the

administrator needs to have some experience with Java and SQL. To get around this

requirement, an administrator interface was built and integrated with the JDRBAC

application, to make administrative tasks much simpler and less cumbersome than

without the interface.

The prototype built for this thesis is a working model that is intended as a

reference implementation for database role-based access control. The model has not been

perfected, leaving many aspects for improving upon the model future research.

First, the JDRBAC tree structure is designed to load the entire RBAC policy in

memory. Future research is needed to study the feasibility and scalability aspects that

result from this design choice. In particular, the prototype was tested using a small set of

roles, and databases with a small number of tables and tablefields. Future research can

determine the extent and limitations of this model in a vast distributed environment.

 60

Second, the set of operations allowed for the users in the JDRBAC

implementation are limited to read and write. The extension of the set of operations to

allow users to create or delete objects from the databases raises issues of concurrency

control, especially when two or more users are editing the same information. The study of

the concurrency control mechanisms suitable for the JDRBAC implementation is left to

future research.

Third, the JDRBAC implementation does not account for dynamic detection of

policy changes, such as permission revocation. Neither does it address the simultaneous

activation of multiple roles. These two aspects are crucial for the efficient operation of

this application in a distributed environment. The study of the temporal validation

mechanism is left to future research.

Finally, The JDRBAC application is intended to be used in an open environment

such as the Internet. Therefore special attention has to be given to the security of the

application and the communication channels utilized by the application. These channels

include both those between the application and its user community, and between the

application and the database systems it accesses. Brief solutions are presented in the

security chapter that propose the use of secure socket layers (SSL) combined with

encryption, but a more profound security study remains to be conducted.

 61

THIS PAGE INTENTIONALLY LEFT BLANK

 62

LIST OF REFERENCES

Barkley, J., Beznosov, K., Uppal, J. (1999) Supporting Relationships in Access Control

using Role-Based Access Control. In Proceedings of the fourth ACM workshop on role-
based access control, October 1999.

Barkley, J., Kuhn, D.R., Rosenthal, L., Skall, M., Cincotta, A. Role-Based Access

Control for the Web. National Institute of Standards and Technology Gaithersburg,
Maryland 20899.

Bertino, E., Bonatti P.A., and Ferrari, E. (2000) TRBAC: A temporal role-based access

control model. In Proc. Fifth Workshop on Role-Based Access Control, ACM (Berlin,
Germany, July 2000), 21-30.

Beznosov, K. (2001) Engineering Access Control for Distributed Enterprise Applications.

Center for Advanced Systems Engineering School of Computer Science, Florida
International University.

Beznosov, K., Deng, Y. A Framework for Implementing Role-Based Access Control

Using CORBA Security Service. Center for Advanced Systems Engineering School of
Computer Science, Florida International University.

Beznosov, K., Deng, Y., Blakley, R., Burt, C., Barkley, J. (1999). A resource Access

Decision Service for CORBA-Based Distributed Systems. In Proceedings of the Annual
Computer Security Applications Conference. (Phoenix, Arizona, USA, December 6-10,
1999).

Bhasker, B., Egyhazy, C. J., Triantis, K. P. (1992) The architecture of a heterogeneous

distributed database management system: The distributed access view integrated
database (DAVID). In Proc. Annual Computer Science Conf., ACM (Kansas City,
Mo., April 1992), 173-179.

Eig, J., Burton, T.M., (2001, November 13). Drugstore data could be tip-off to

bioterrorism. Wall Street Journal, p. B1.

Ekstein, R., Loy, M., Wood, D. (1998). Java Swing. Sebastopol, CA: O’Reilly and

Associates.

Espinal, L., Beznosov, K., Deng, Y. (2001) Design and Implementation of Resource

Access Decision Server. Center for Advanced Systems Engineering School of
Computer Science, Florida International University

 63

Ferraiolo, D., Barkley, J., Kuhn, D.R. A Role-Based Access Control Model and
Reference Implementation within a Corporate Intranet. NIST Gaithersburg, Maryland
20899.

Ferraiolo, D., Kuhn, R. (1992). Role-Based Access Control. In Proceedings of the 15th

National Computer Security Conference, NIST Gaithersburg, Maryland 20899.

Flanagan, D. (1999). Java in a Nutshell, Third Edition. Sepastopol, CA: O’Reilly and

Associates.

Garms, J., Somerfield, D. (2001). Professional Java Security. Birmingham, UK: Wrox

Press Ltd.

Mönkeberg, A. and Rakete, R. Three for one: role-based access-control management in

rapidly changing heterogeneous environments. In Proc. Fifth Workshop on Role-Based
Access Control, ACM (Berlin, Germany, July 2000), 83-88.

Sandhu, R. Engineering Authority and Trust in Cyberspace: The OM-AM and RBAC

Way. ISE department, George Mason University.

Sandhu, R., Ferraiolo, D., and Kuhn, D. R. The NIST model for role-based access

control: Towards a unified standard. In Proc. Fifth Workshop on Role-Based Access
Control, ACM (Berlin, Germany, July 2000), 47-63.

 64

APPENDIX A

JDRBAC SOURCE CODE

 This appendix contains the source code for the JDRBAC prototype created as a

proof of concept for the thesis. Although the prototype is a fully functional application, it

does not consist of a finished program for distribution. The code is presented in an “as-

is” format, intended only as a foundation for future research. The code references, but

does not contain, source code from the Hypersonic SQL Group.

 65

THIS PAGE INTENTIONALLY LEFT BLANK

 66

//--
// Filename: Login.java
// Date: 02/24/2002
// Project: JDRBAC implementation
// Compiler: SDK 1.3
//--

package rbactreetest;

import java.sql.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.table.*;
import javax.swing.tree.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

/*
 * This class is used to identify and authenticate
 * the user of the JDRBAC application implementation.
 * The user has to provide a username and a password as
 * credentials. Only three attemps are allowed.
 *
 * @authors Greg Nygard; Hammoudi Faouzi
 *
 */

public class Login extends Frame implements ActionListener
{

 /* ******************************
 Data members
 ********************************/

 private TextField nameField;
 private TextField pwdField;
 private TextField status;
 private String temp;
 private String userName;
 private String password;
 private int counter=0;
 private Button enter;
 private Panel pN;

 67

 private boolean validLogin;

 private ResultSet rset; // JDBC connection parameter
 private Statement stmt; // JDBC connection parameter

 // ----------- ----- Connection Variables ------------------

 String userid = "sa";
 String pass = "";
 String url = "jdbc:hsqldb:hsql://localhost";
 String driver = "org.hsqldb.jdbcDriver";
 Connection conn;
 // ----------- ---

 /********************************
 the Constructor
 ********************************/

 public Login()
 {
 super("Jdrbac: User Identification");
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });

 pN = new Panel();
 nameField = new TextField(20);
 pwdField = new TextField(20);
 nameField.addActionListener(this);
 pwdField.addActionListener(this);
 pwdField.setEchoChar('*');
 pN.add(nameField);
 pN.add(pwdField);
 enter = new Button("Submit");
 enter.addActionListener(this);
 add(pN);
 pN.add(new Label("Q u e r y S t a t u s:"));
 pN.add(status = new TextField(20));
 add("South",enter);
 setBounds(350,200,250,180);
 setVisible(true);

 68

 // Connecting to the database.
 try
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, userid, pass);
 stmt = conn.createStatement();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.err.println(cnfe);
 }
 catch(SQLException sqle)
 {
 System.err.println(sqle); // error connection to the database
 }
 }

 /**
 Public Methods:

 void actionPerformed(ActionEvent evt)
 String getUserName()
 boolean validLogon()
 ***/

 /*************************************
 this method checks the validity of
 the username and password provided
 **************************************/

 public void actionPerformed(ActionEvent evt)
 {
 Object source = evt.getSource();
 if(source.equals(enter))
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select * from users " +
 "where users.username = '" + nameField.getText() + "' " +
 "and users.password = '" + pwdField.getText() + "'");

 if (rset.next())
 {
 userName = (rset.getString(1));

 69

 password = (rset.getString(2));

 status.setText("Valid login ");
 validLogin = true;
 counter = 0;
 }
 else
 {
 counter ++;
 status.setText("Incorrect Login "+counter);
 validLogin = false;
 if(counter==3)
 {
 dispose();
 System.exit(0);
 }
 }
 }
 catch(SQLException sqle)
 {
 status.setText(sqle.getMessage());
 }
 }
 }

 /********************************
 this method returns the username
 of the user logging in
 ********************************/

 public String getUserName()
 {
 return userName;
 }

 /********************************
 this method returns true
 if the login is valid
 ********************************/

 public boolean validLogon()
 {
 return validLogin;
 }
}

 70

//--
// Filename: Drbac.java
// Date: 02/24/2002
// Project: JDRBAC implementation
// Compiler: SDK 1.3
//--
package rbactreetest;

import java.sql.*;
import java.util.*;

/*
 * This class is used to provide the JDRBAC tree with
 * the reference data. It connects to the Hypersonic database
 * and retrieves all the needed information on the particular user.
 *
 * @authors Greg Nygard; Hammoudi Faouzi
 *
 */

public class Drbac
{

 /********************************
 Data members
 ********************************/

 public static String username;
 public static String password;
 public static boolean validUser=true;
 public static String sRole;
 public static String sDatabase;
 public static String sTable;
 public static String sTableField;
 private ResultSet rset;
 private Statement stmt;

 // ----------- ----- Connection Variables ------------------

 String userid = "sa";
 String pass = "";
 String url = "jdbc:hsqldb:hsql://localhost";
 String driver = "org.hsqldb.jdbcDriver";
 Connection conn;
 // ----------- ---

 71

 /********************************
 the Constructor
 ********************************/

 public Drbac()
 {
 // Connecting to the database.
 try
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, userid, pass);
 stmt = conn.createStatement();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.err.println(cnfe);
 }
 catch(SQLException sqle)
 {
 System.err.println(sqle); // error connection to database
 }
 }
 /**
 Public Methods:

 boolean validateUser(String username, String password)
 Vector getRoles(String user)
 String getRole()
 Vector getDatabases(String role)
 Vector getTables(String role, String database)
 Vector getTableFields(String role, String table)
 Vector getTableFieldOperations(String role, String tablefield)
 ***/
 /***
 this method checks the validity of
 the username and passord provided
 ***/
 public boolean validateUser(String username, String password)
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select * from users " +
 "where users.username = '" + username + "' " +

 72

 "and users.password = '" + password + "'");

 if (rset.next())
 {
 validUser=true;
 return validUser;
 }
 }
 catch(SQLException sqle)
 {
 validUser=false;
 }
 validUser=false;
 return validUser;
 }

 /***
 This method gets the roles that the user
 is allowed to assumein the application.
 ***/
 public Vector getRoles(String user)
 {
 Vector roles = new Vector();
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select role from user_role " +
 "where user_role.username = '" + user + "'");
 while (rset.next())
 {
 String tempRole = rset.getString(1);
 roles.addElement(tempRole);
 }
 }
 catch(SQLException sqle) {}
 return roles;
 }

 /*************************************
 this method returns the active role
 selected by the user.
 **************************************/
 public String getRole()
 {
 return sRole;

 73

 }
 /***
 This method allows to find the databases
 that are allowed for the assumed role.
 ***/
 public Vector getDatabases(String role)
 {
 Vector databases = new Vector();
 sRole=role;
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select database from role_database " +
 "where role_database.role = '" + sRole + "'");
 while (rset.next())
 {
 String tempDatabase = rset.getString(1);
 databases.addElement(tempDatabase);
 }
 rset.close();
 }
 catch(SQLException sqle){}
 return databases;
 }

 /***
 This method allows to find the tables of the
 database that the role is authorized to access
 ***/
 public Vector getTables(String role, String database)
 {
 Vector tables = new Vector();
 sRole=role;
 sDatabase=database;
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select tables from role_database_tables" +
 "where role_database_tables.database = '" + sDatabase + "'"+
 "AND role_database_tables.role = '" + sRole + "'");
 while (rset.next())
 {
 String tempTable = rset.getString(1);
 tables.addElement(tempTable);

 74

 }
 rset.close();
 }
 catch(SQLException sqle) {}
 return tables;
 }

 /***
 This method allows to get the tablefields of the selected
 table in the database that the role is authorized to access
 ***/
 public Vector getTableFields(String role, String table)
 {
 Vector tableFields = new Vector();
 sRole=role;
 sTable=table;
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select tablefield from table_tablefields"+
 "where table_tablefields.table = '" + sTable + "'");
 while (rset.next())
 {
 String tempTableField = rset.getString(1);
 tableFields.addElement(tempTableField);
 }
 rset.close();
 }
 catch(SQLException sqle) {}
 return tableFields;
 }

 /**
 This method allows to get the Operations
 that the active role is allowed to perform
 on the tableField of the selected table.
 ***/
 public Vector getTableFieldOperations(String role, String tablefield)
 {
 Vector tableFieldOperations = new Vector();
 sRole = role;
 sTableField=tablefield;
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 75

 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select operation from "+
 "role_tablefield_operation " +
 "where role_tablefield_operation.role = '" + sRole + "' "+
 "and role_tablefield_operation.tablefield = '" + sTableField+ "'");

 while (rset.next())
 {
 String ops = new String(rset.getString(1));
 if (ops.equals("R")) tableFieldOperations.addElement("Read");
 if (ops.equals("W")) tableFieldOperations.addElement("Write");
 if (ops.equals("RW"))
 {
 tableFieldOperations.addElement("Read");
 tableFieldOperations.addElement("Write");
 }
 }
 rset.close();
 }
 catch(SQLException sqle) {}
 return tableFieldOperations;
 }
}

 76

//--
// Filename: RBACTreeStructure.java
// Date: 02/24/2002
// Project: JDRBAC implementation
// Compiler: SDK 1.3
//--
package rbactreetest;

import java.util.*;

/*
 * This class allows the creation of the JDRBAC tree structure
 * from the root to all possible leaves
 *
 * @authors Greg Nygard; Hammoudi Faouzi
 *
 */

public class RBACTreeStructure
{

 /********************************
 Data members
 ********************************/
 private TreeNode rootPtr;
 private TreeNode currentPtr;
 private TreeNode rolePtr;
 private TreeNode databasePtr;
 private TreeNode tablePtr;
 private TreeNode tablefieldPtr;
 private TreeNode operationPtr;

 public Vector roles;
 public Vector databases;
 public Vector tables;
 public Vector tablefields;
 public Vector operations;

 Drbac getinfo;
 Login userlogin;

 /********************************
 the Constructor
 ********************************/
 public RBACTreeStructure(Drbac getInfo, Login userLogin)
 {

 77

 getinfo = getInfo;
 userlogin = userLogin;
 createTree();
 }

 /**
 Public Methods:

 void createTree()
 void makeRoleChildren(TreeNode tempPtr)
 void makeDatabaseChildren(TreeNode tempPtr, String roleName)
 void makeTableChildren(TreeNode tempPtr, String roleName)
 void makeTableFieldChildren(TreeNode tempPtr, String roleName)
 TreeNode createNode(String name, TreeNode parent, TreeNode peer,
 TreeNode child)
 Vector getRoles()
 Vector getDatabases(String roleName)
 Vector getTables(String roleName, String dbName)
 Vector getTableFields(String roleName, String dbName,
 String tableName)
 Vector getOperations(String roleName, String dbName,
 String tableName, String tablefieldName)
 class TreeNode
 ***/

 /*************************************
 this method creates the the structure
 of the JDRBAC tree
 **************************************/
 public void createTree()
 {

 rootPtr = createNode("RBACTree", null, null, null);
 int marker = 0;
 roles = getinfo.getRoles(userlogin.getUserName());
 rootPtr.childPtr = createNode((String)roles.elementAt(marker),rootPtr,null,null);
 rolePtr = rootPtr.childPtr;
 currentPtr = rolePtr;
 while (marker < roles.size()-1)
 {
 marker = marker + 1;
 currentPtr.peerPtr = createNode((String)roles.elementAt(marker),null,null,null);
 currentPtr = currentPtr.peerPtr;
 }

 while (rolePtr != null)

 78

 {
 makeRoleChildren(rolePtr);
 rolePtr = rolePtr.peerPtr;
 }
 rolePtr = rootPtr.childPtr;
 }

 /*************************************
 this method creates the children
 of node role
 **************************************/
 public void makeRoleChildren(TreeNode tempPtr)
 {
 int marker = 0;
 String roleName = (String)tempPtr.nodeName;
 databases = getinfo.getDatabases(roleName);
 tempPtr.childPtr =
createNode((String)databases.elementAt(marker),tempPtr,null,null);
 databasePtr = tempPtr.childPtr;
 currentPtr = databasePtr;
 while (marker < databases.size()-1)
 {
 marker = marker + 1;
 currentPtr.peerPtr =
createNode((String)databases.elementAt(marker),null,null,null);
 currentPtr = currentPtr.peerPtr;
 }

 while (databasePtr != null)
 {
 makeDatabaseChildren(databasePtr, roleName);
 databasePtr = databasePtr.peerPtr;
 }
 databasePtr = tempPtr.childPtr;
 }

 /*************************************
 this method creates the children
 nodes of the database node.
 **************************************/
 public void makeDatabaseChildren(TreeNode tempPtr, String roleName)
 {
 int marker = 0;
 tables = getinfo.getTables(roleName,tempPtr.nodeName);
 tempPtr.childPtr =
 createNode((String)tables.elementAt(marker),tempPtr,null,null);

 79

 tablePtr = tempPtr.childPtr;
 currentPtr = tablePtr;
 while (marker < tables.size()-1) {
 marker = marker + 1;
 currentPtr.peerPtr =
 createNode((String)tables.elementAt(marker),null,null,null);
 currentPtr = currentPtr.peerPtr;
 }
 while (tablePtr != null)
 {
 makeTableChildren(tablePtr, roleName);
 tablePtr = tablePtr.peerPtr;
 }
 tablePtr = tempPtr.childPtr;
 }

 /*************************************
 this method creates the children
 nodes ofthe table node
 **************************************/
 public void makeTableChildren(TreeNode tempPtr, String roleName)
 {
 int marker = 0;
 tablefields = getinfo.getTableFields(roleName, tempPtr.nodeName);
 tempPtr.childPtr =
 createNode((String)tablefields.elementAt(marker),tempPtr,null,null);
 tablefieldPtr = tempPtr.childPtr;
 currentPtr = tablefieldPtr;
 while (marker < tablefields.size()-1)
 {
 marker = marker + 1;
 currentPtr.peerPtr =
 createNode((String)tablefields.elementAt(marker),null,null,null);
 currentPtr = currentPtr.peerPtr;
 }
 while (tablefieldPtr != null)
 {
 makeTableFieldChildren(tablefieldPtr, roleName);
 tablefieldPtr = tablefieldPtr.peerPtr;
 }
 tablefieldPtr = tempPtr.childPtr;
 }

 /*************************************
 this method creates the chilren
 nodes of the tablefield node

 80

 **************************************/
 public void makeTableFieldChildren(TreeNode tempPtr, String roleName)
 {
 int marker = 0;
 operations = getinfo.getTableFieldOperations(roleName,tempPtr.nodeName);
 if (operations.size() == 0)
 tempPtr.childPtr = createNode("Read",tempPtr,null,null);
 else
 tempPtr.childPtr =
 createNode((String)operations.elementAt(marker),tempPtr,null,null);
 operationPtr = tempPtr.childPtr;
 currentPtr = operationPtr;
 while (marker < operations.size()-1)
 {
 marker = marker + 1;
 currentPtr.peerPtr =
 createNode((String)operations.elementAt(marker),null,null,null);
 currentPtr = currentPtr.peerPtr;
 }
 }

 /*************************************
 this method creates the nodes
 of the JDRBAC tree
 **************************************/
 public TreeNode createNode(String name, TreeNode parent, TreeNode peer,
 TreeNode child)
 {
 TreeNode newNode = new TreeNode();
 newNode.parentPtr = parent;
 newNode.peerPtr = peer;
 newNode.childPtr = child;
 newNode.nodeName = name;
 return newNode;
 }

 /***
 this method fills the role node of the
 JDRBAC tree with the reference data
 **/
 public Vector getRoles()
 {
 Vector roleVector = new Vector();
 rolePtr = rootPtr.childPtr;
 while (rolePtr != null)
 {

 81

 roleVector.addElement(rolePtr.nodeName);
 rolePtr = rolePtr.peerPtr;
 }
 return roleVector;
 }

 /***
 this method fills the role node of the
 JDRBAC tree with the reference data
 **/
 public Vector getDatabases(String roleName) {
 Vector databaseVector = new Vector();
 rolePtr = rootPtr.childPtr;
 while (rolePtr.nodeName != roleName) {
 rolePtr = rolePtr.peerPtr;
 }
 databasePtr = rolePtr.childPtr;
 while (databasePtr != null) {
 databaseVector.addElement(databasePtr.nodeName);
 databasePtr = databasePtr.peerPtr;
 }
 return databaseVector;
 }

 /***
 this method fills the role node of the
 JDRBAC tree with the reference data
 **/
 public Vector getTables(String roleName, String dbName)
 {
 Vector tableVector = new Vector();
 rolePtr = rootPtr.childPtr;
 while (rolePtr.nodeName != roleName)
 {
 rolePtr = rolePtr.peerPtr;
 }
 databasePtr = rolePtr.childPtr;
 while (databasePtr.nodeName != dbName)
 {
 databasePtr = databasePtr.peerPtr;
 }
 tablePtr = databasePtr.childPtr;
 while (tablePtr != null)
 {
 tableVector.addElement(tablePtr.nodeName);
 tablePtr = tablePtr.peerPtr;

 82

 }
 return tableVector;
 }

 /***
 this method fills the role node of the
 JDRBAC tree with the reference data
 **/
 public Vector getTableFields(String roleName, String dbName, String tableName)
 {
 Vector tablefieldVector = new Vector();
 rolePtr = rootPtr.childPtr;
 while (rolePtr.nodeName != roleName)
 {
 rolePtr = rolePtr.peerPtr;
 }
 databasePtr = rolePtr.childPtr;
 while (databasePtr.nodeName != dbName)
 {
 databasePtr = databasePtr.peerPtr;
 }
 tablePtr = databasePtr.childPtr;
 while (tablePtr.nodeName != tableName)
 {
 tablePtr = tablePtr.peerPtr;
 }
 tablefieldPtr = tablePtr.childPtr;
 while (tablefieldPtr != null)
 {
 tablefieldVector.addElement(tablefieldPtr.nodeName);
 tablefieldPtr = tablefieldPtr.peerPtr;
 }
 return tablefieldVector;
 }

 /***
 this method fills the role node of the
 JDRBAC tree with the reference data
 **/
 public Vector getOperations(String roleName, String dbName, String tableName,
 String tablefieldName)
 {
 Vector operationVector = new Vector();
 rolePtr = rootPtr.childPtr;
 while (rolePtr.nodeName != roleName)
 {

 83

 rolePtr = rolePtr.peerPtr;
 }
 databasePtr = rolePtr.childPtr;
 while (databasePtr.nodeName != dbName)
 {
 databasePtr = databasePtr.peerPtr;
 }
 tablePtr = databasePtr.childPtr;
 while (tablePtr.nodeName != tableName)
 {
 tablePtr = tablePtr.peerPtr;
 }
 tablefieldPtr = tablePtr.childPtr;
 while (tablefieldPtr.nodeName != tablefieldName)
 {
 tablefieldPtr = tablefieldPtr.peerPtr;
 }
 operationPtr = tablefieldPtr.childPtr;
 while (operationPtr != null)
 {
 operationVector.addElement(operationPtr.nodeName);
 operationPtr = operationPtr.peerPtr;
 }
 return operationVector;
 }

 /***
 this method fills the role node of the
 JDRBAC tree with the reference data
 **/
 public class TreeNode
 {
 public TreeNode parentPtr;
 public TreeNode peerPtr;
 public TreeNode childPtr;
 public String nodeName;
 }
}

 84

//--
// Filename: RBACQueries.java
// Date: 02/24/2002
// Project: JDRBAC implementation
// Compiler: SDK 1.3
//--
package rbactreetest;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.util.*;
import java.io.*;
import java.sql.*;

/*
 * This class is used to execute and display the results of the queries
 * that the user wants to perform on the selected database.
 * This is only a prototype, and further enhancements or approach
 * are possible and customizable.
 *
 * @authors Greg Nygard; Hammoudi Faouzi
 *
 */

public class RBACQueries extends JFrame
{
 /********************************
 Data members
 ********************************/

 // --------- Parameters for JDBC connection to Oracle------------
 String oracleuserid = "system"; //Login Name
 String pass = "manager"; //Password
 String oracleurl = "jdbc:oracle:thin:@rbac-server:1521:ATLANTIS";
 String oracledriver = "oracle.jdbc.driver.OracleDriver";
 // --------- End of Parameters for JDBC connection to Oracle------

 // --------- Parameters for JDBC connection to DB2 Database -------
 String db2userid = "db2admin";
 String db2pass = "";
 // Password is the same as for Oracle
 String db2url = "jdbc:db2:Carthage";
 String db2driver = "COM.ibm.db2.jdbc.app.DB2Driver";
 // --------- End of Parameters for JDBC connection to DB2 Database -------

 85

 String temp;
 Connection conn;
 Statement state;
 ResultSet rset;
 JTextArea displayText = new JTextArea(100,50);

 /********************************
 the Constructor
 ********************************/
 public RBACQueries()
 {
 super("RBAC Queries");

 Container content = getContentPane();

 JPanel displayPanel = new JPanel();
 displayPanel.add(displayText);
 content.add(displayPanel, BorderLayout.CENTER);

 JPanel buttonPanel = new JPanel();
 JButton close = new JButton("Close");
 close.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 closeWindow();
 }
 });
 buttonPanel.add(close);
 content.add(buttonPanel, BorderLayout.SOUTH);
 setSize(600,400);
 setLocation(100,100);
 setVisible(true);
 }
 public void closeWindow()
 {
 super.dispose();
 }

 /**
 Public Methods:
 void doQueries(Object[] path)
 ***/

 /*************************************
 this method executes the query submitted
 by the user of the application.
 **************************************/

 86

 public void doQueries(Object[] path)
 {
 String role = path[1].toString();
 String database = path[2].toString();
 String table = path[3].toString();
 String tablefield = path[4].toString();
 String driver;
 String url;
 String userid;
 if (database.equalsIgnoreCase("Atlantis"))
 {
 System.out.println("Connecting to Atlantis");
 driver = oracledriver;
 url = oracleurl;
 userid = oracleuserid;
 try
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, userid, pass);
 state = conn.createStatement();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.out.println("No connection");
 }
 catch(SQLException sqle)
 {
 System.out.println("No connection");
 }
 }
 else
 {
 System.out.println("Connecting to Carthage");
 driver = db2driver;
 url = db2url;
 userid = ""; //db2userid;
 try
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url);
 state = conn.createStatement();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.out.println("No connection");
 }

 87

 catch(SQLException sqle)
 {
 System.out.println("No connection");
 }
 }
 displayText.append("Database: "+database+"\n");
 displayText.append("Table: "+table+"\n");
 displayText.append("TableField: "+tablefield+"\n");
 displayText.append("Results: \n");
 try
 {
 state = conn.createStatement();
 rset = state.executeQuery("select * from "+table);
 while (rset.next())
 {
 displayText.append(rset.getString(1)+" ");
 System.out.println(rset.getString(1));
 }
 displayText.append("\n");
 rset.close();
 state.close();
 }
 catch(SQLException sqle)
 {
 System.out.println("No return from database");
 }
 }
}

 88

//--
// Filename: RBACTree.java
// Date: 02/24/2002
// Project: JDRBAC implementation
// Compiler: SDK 1.3
//--
package rbactreetest;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

/*
 * This class is used to display the JDRBAC
 * tree interface and the selection made by
 * the user.
 *
 * @authors Greg Nygard; Hammoudi Faouzi
 *
 */

public class RBACTree extends JFrame
{

 /********************************
 Data members
 ********************************/

 static RBACTree rbactree;
 RBACQueries rbacqueries;
 static Drbac getInfo = new Drbac();
 static RBACTreeStructure treeStructure;
 static Login userLogin = new Login();
 static boolean loginTest;

 /********************************
 Main of the application
 ********************************/

 public static void main(String[] args)
 {
 loggingIn(); // Invokes the login interface
 // tree construction

 89

 treeStructure = new RBACTreeStructure(getInfo, userLogin);
 rbactree = new RBACTree(); // Tree display
 }

 private Icon customOpenIcon = new ImageIcon("c:/icons/openbook.gif");
 private Icon customClosedIcon = new ImageIcon("c:/icons/closedbook.gif");
 private Icon customLeafIcon = new ImageIcon("c:/icons/viewdoc.gif");

 String selection = new String();
 Object[] path;
 JTextArea selectText = new JTextArea(18,25);
 TreePath tp;
 JRadioButton read = new JRadioButton("Read",false);
 JRadioButton write = new JRadioButton("Write",false);

 /********************************
 the Constructor
 ********************************/
 public RBACTree() {
 super("RBAC Tree");
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) { System.exit(0); }
 });
 Container content = getContentPane();

 String userName = userLogin.getUserName();
 DefaultMutableTreeNode root = createNodes(userName);
 JTree tree = new JTree(root);
 DefaultTreeCellRenderer renderer = new DefaultTreeCellRenderer();
 renderer.setOpenIcon(customOpenIcon);
 renderer.setClosedIcon(customClosedIcon);
 renderer.setLeafIcon(customLeafIcon);
 tree.setCellRenderer(renderer);
 tree.collapseRow(1);
 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent tse) {
 tp = tse.getNewLeadSelectionPath();
 if (tp.getPathCount() == 5) {
 setOperations(tp.getPath());
 }
 else {
 read.setSelected(true);
 read.setEnabled(false);
 write.setSelected(false);
 write.setEnabled(false);
 }

 90

 }
 });
 content.add(new JScrollPane(tree), BorderLayout.CENTER);
 JPanel opPanel = new JPanel();
 opPanel.setLayout(new GridLayout(6,1));
 read.setEnabled(false);
 read.setSelected(false);
 write.setEnabled(false);
 write.setSelected(false);
 final ButtonGroup bgroup = new ButtonGroup();
 bgroup.add(read);
 bgroup.add(write);
 opPanel.add(new JLabel());
 opPanel.add(new JLabel("Operations"));
 opPanel.add(read);
 opPanel.add(write);
 content.add(opPanel, BorderLayout.WEST);
 content.add(new JLabel(" Data Options " +
 " Data Selections"), BorderLayout.NORTH);
 JPanel buttonPanel = new JPanel();
 buttonPanel.add(new JLabel(" "));
 JButton select = new JButton("Select");
 select.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 if (tp.getPathCount() == 5) {
 selectText.setText("");
 path = tp.getPath();
 String role = path[1].toString();
 String database = path[2].toString();
 String table = path[3].toString();
 String tablefield = path[4].toString();
 selection = role+" - "+database+" - "+table+" - "+tablefield;
 if (read.isSelected()) {
 selection = selection + " - read";
 selectText.append(selection + "\n");
 }
 if (write.isSelected()) {
 selection = selection + " - write";
 selectText.append(selection + "\n");
 }
 }
 }
 });
 buttonPanel.add(select);
 JButton clear = new JButton("Clear");
 clear.addActionListener(new ActionListener() {

 91

 public void actionPerformed(ActionEvent event) {
 selectText.setText("");
 }
 });
 buttonPanel.add(clear);
 buttonPanel.add(new JLabel(" "));
 JButton submit = new JButton("Submit");
 submit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 rbacqueries = new RBACQueries();
 rbacqueries.doQueries(path);
 }
 });
 buttonPanel.add(submit);
 content.add(buttonPanel, BorderLayout.SOUTH);
 JPanel entryPanel = new JPanel();
 entryPanel.setLayout(new FlowLayout());
 entryPanel.add(new JScrollPane(selectText));
 content.add(entryPanel, BorderLayout.EAST);
 setSize(600,400);
 setLocation(100,100);
 setVisible(true);
 }

 private static void loggingIn()
 {
 loginTest = userLogin.validLogon();
 while (!loginTest)
 {
 loginTest = userLogin.validLogon();
 }
 userLogin.dispose();
 }

 private DefaultMutableTreeNode createNodes(String userName)
 {
 DefaultMutableTreeNode root =
 new DefaultMutableTreeNode(userName);
 DefaultMutableTreeNode role;
 DefaultMutableTreeNode database;
 DefaultMutableTreeNode table;
 DefaultMutableTreeNode tablefield;
 DefaultMutableTreeNode operation;

 Vector userRole = new Vector();
 userRole = treeStructure.getRoles();

 92

 for (int x = 0; x < userRole.size(); x++)
 {
 role = new DefaultMutableTreeNode((String)userRole.elementAt(x));
 root.add(role);
 createDatabaseNodes(role);
 }
 return(root);
 }

 private void createDatabaseNodes(DefaultMutableTreeNode role)
 {
 DefaultMutableTreeNode database;
 Vector databases = new Vector();
 String roleName = role.toString();
 databases = treeStructure.getDatabases(roleName);
 for (int x = 0; x < databases.size(); x++)
 {
 database = new DefaultMutableTreeNode((String)databases.elementAt(x));
 role.add(database);
 createTableNodes(database, roleName);
 }
 }

 private void createTableNodes(DefaultMutableTreeNode database,
 String roleName)
 {

 DefaultMutableTreeNode table;
 Vector tables = new Vector();
 String dbName = database.toString();
 tables = treeStructure.getTables(roleName,dbName);

 for (int x = 0; x < tables.size(); x++)
 {
 table = new DefaultMutableTreeNode((String)tables.elementAt(x));
 database.add(table);
 createTableFieldNodes(table,roleName,dbName);
 }
 }

 private void createTableFieldNodes(DefaultMutableTreeNode table,
 String roleName, String dbName)
 {
 DefaultMutableTreeNode tablefield;
 Vector tablefields = new Vector();

 93

 String tableName = table.toString();
 tablefields = treeStructure.getTableFields(roleName,dbName,tableName);

 for (int x = 0; x < tablefields.size(); x++)
 {
 tablefield =
 new DefaultMutableTreeNode((String)tablefields.elementAt(x));
 table.add(tablefield);
 }
 }

 private void setOperations(Object[] path)
 {
 Vector operations = new Vector();
 String role = path[1].toString();
 String database = path[2].toString();
 String table = path[3].toString();
 String tablefield = path[4].toString();
 operations = treeStructure.getOperations(role,database,table,tablefield);
 for (int x = 0; x < operations.size(); x++)
 {
 if ((String)operations.elementAt(x) == "Read")
 {
 read.setEnabled(true);
 if (x < 1)
 {
 write.setEnabled(false);
 read.setSelected(true);
 }
 }
 if ((String)operations.elementAt(x) == "Write")
 {
 write.setEnabled(true);
 if (x < 1)
 {
 read.setEnabled(false);
 write.setSelected(true);
 }
 }
 }
 }
}

 94

//--
// Filename: Jdrbac.java
// Date: 02/20/2002
// Compiler: SDK 1.3
//--

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
 * This class represents the administration Interface available
 * for the JDRBAC administrator to perform his duties.
 * This interface allows to alleviate the requiremment for the
 * administrator to be expert in SQL. It is a menu driven application
 * that can be used as tools instead of writing SQL queries
 *
 * @authors Greg Nygard; Faouzi Hammoudi
 *
 */

public class Jdrbac extends JFrame implements ActionListener
{

 /********************************
 Data members
 ********************************/

 JMenuBar mb; // a MenuBar to hold the menus

 private JMenu users, roles,databases,tables,tablefields,operations,exit;

 // menu items for the user menu
 private JMenuItem addUser, removeUser, changeUserPwd, showUsers;

 // Menu Items for the roles
 private JMenuItem addRole,removeRole,showRoles;

 // Menu Items for the databases
 private JMenuItem addDatabase,removeDatabase,showDatabases;

 // Menu Items for the tables
 private JMenuItem addTable,removeTable,showTables;

 // Menu Items for the tablefields
 private JMenuItem addTablefield,removeTablefield,showTablefields;

 95

 // Menu Items for the operations
 private JMenuItem addOperation,removeOperation,showOperations;

 // Menu Items for the Exit menu
 private JMenuItem exitApp;

 /********************************
 Constructor
 ********************************/

 public Jdrbac()
 {
 super(" JDRBAC: Java Database Role-Based Access Control Web Application");
 addWindowListener(new WindowAdapter() { // to catch the
 public void windowClosing(WindowEvent e) { // closing window
 System.exit(0);
 }
 });

 setSize(700, 450); // sets the size of the window

 setLocation(50, 50); // sets the location of the window
 addMenus();
 setVisible(true);
 }

 /********************************
 Public Methods:

 void actionPerformed(ActionEvent evt)
 void addMenus()
 void main()

 ********************************/

 public void addMenus() // method to add menus to a menu bar
 {

 mb = new JMenuBar(); // create a menu bar

 setJMenuBar(mb); // adds the menubar to the window

 // The Users Management menu

 96

 users = new JMenu("Users Mgmt"); // create the menu for the line width
 users.setFont(new Font("TimesRoman",Font.BOLD, 14));

 addUser = new JMenuItem("Add User");
 addUser.setFont(new Font("TimesRoman",Font.BOLD, 12));

 removeUser = new JMenuItem("Remove User");
 removeUser.setFont(new Font("TimesRoman",Font.BOLD, 12));

 changeUserPwd = new JMenuItem("Change User Password");
 changeUserPwd.setFont(new Font("TimesRoman",Font.BOLD, 12));

 showUsers = new JMenuItem("Show users");
 showUsers.setFont(new Font("TimesRoman",Font.BOLD, 12));

 users.add(addUser); // add the menu item to the menu
 users.addSeparator(); // add a line separator
 addUser.addActionListener(this); // add the listener to the menu item

 users.add(removeUser); // same thing for the other menu items
 users.addSeparator();
 removeUser.addActionListener(this);
 users.add(changeUserPwd);
 users.addSeparator();
 changeUserPwd.addActionListener(this);
 users.add(showUsers);
 showUsers.addActionListener(this);
 mb.add(users);

 // The roles menu
 roles = new JMenu("Roles Mgmt");
 roles.setFont(new Font("TimesRoman",Font.BOLD, 14));
 addRole = new JMenuItem("Add Role");
 addRole.setFont(new Font("TimesRoman",Font.BOLD, 12));
 removeRole = new JMenuItem("Remove Role");
 removeRole.setFont(new Font("TimesRoman",Font.BOLD, 12));
 showRoles = new JMenuItem("Show Roles");
 showRoles.setFont(new Font("TimesRoman",Font.BOLD, 12));
 roles.add(addRole);
 roles.addSeparator();
 addRole.addActionListener(this);
 roles.add(removeRole);
 roles.addSeparator();
 removeRole.addActionListener(this);
 roles.add(showRoles);
 showRoles.addActionListener(this);

 97

 // add the menu to the menu bar
 mb.add(roles);

 // The database menu
 databases = new JMenu("Databases");
 databases.setFont(new Font("TimesRoman",Font.BOLD, 14));

 addDatabase = new JMenuItem("Add Database-Role");
 addDatabase.setFont(new Font("TimesRoman",Font.BOLD, 12));

 removeDatabase = new JMenuItem("Remove Database-Role");
 removeDatabase.setFont(new Font("TimesRoman",Font.BOLD, 12));

 showDatabases = new JMenuItem("Show Databases");
 showDatabases.setFont(new Font("TimesRoman",Font.BOLD, 12));

 databases.add(addDatabase);
 databases.addSeparator();
 addDatabase.addActionListener(this);

 databases.add(removeDatabase);
 databases.addSeparator();
 removeDatabase.addActionListener(this);
 databases.add(showDatabases);
 showDatabases.addActionListener(this);
 mb.add(databases);
 // The table menu
 tables = new JMenu("Tables");
 tables.setFont(new Font("TimesRoman",Font.BOLD, 14));
 addTable = new JMenuItem("Add Database-Table");
 addTable.setFont(new Font("TimesRoman",Font.BOLD, 12));
 removeTable = new JMenuItem("Remove Database-Table");
 removeTable.setFont(new Font("TimesRoman",Font.BOLD, 12));
 showTables = new JMenuItem("Show Database-Tables");
 showTables.setFont(new Font("TimesRoman",Font.BOLD, 12));
 tables.add(addTable);
 tables.addSeparator();
 addTable.addActionListener(this);
 tables.add(removeTable);
 tables.addSeparator();
 removeTable.addActionListener(this);
 tables.add(showTables);
 showTables.addActionListener(this);
 mb.add(tables);

 98

 // The tablefields menu
 tablefields = new JMenu("Tablefields");
 tablefields.setFont(new Font("TimesRoman",Font.BOLD, 14));
 addTablefield = new JMenuItem("Add Table-Tablefield");
 addTablefield.setFont(new Font("TimesRoman",Font.BOLD, 12));
 removeTablefield = new JMenuItem("Remove Table-Tablefield");
 removeTablefield.setFont(new Font("TimesRoman",Font.BOLD, 12));
 showTablefields = new JMenuItem("Show Table-Tablefields");
 showTablefields.setFont(new Font("TimesRoman",Font.BOLD, 12));
 tablefields.add(addTablefield);
 tablefields.addSeparator();
 addTablefield.addActionListener(this);
 tablefields.add(removeTablefield);
 tablefields.addSeparator();
 removeTablefield.addActionListener(this);
 tablefields.add(showTablefields);
 showTablefields.addActionListener(this);
 mb.add(tablefields);
 // The Operations menu
 operations = new JMenu("Operations");
 operations.setFont(new Font("TimesRoman",Font.BOLD, 14));
 addOperation = new JMenuItem("Add Tablefield-Operation");
 addOperation.setFont(new Font("TimesRoman",Font.BOLD, 12));
 removeOperation = new JMenuItem("Remove Tablefield-Operation");
 removeOperation.setFont(new Font("TimesRoman",Font.BOLD, 12));
 showOperations = new JMenuItem("Show Tablefield-Operations");
 showOperations.setFont(new Font("TimesRoman",Font.BOLD, 12));
 operations.add(addOperation);
 operations.addSeparator();
 addOperation.addActionListener(this);
 operations.add(removeOperation);
 operations.addSeparator();
 removeOperation.addActionListener(this);
 operations.add(showOperations);
 showOperations.addActionListener(this);
 mb.add(operations);
 // The Exit menu
 exit = new JMenu("Exit");
 exit.setFont(new Font("TimesRoman",Font.BOLD, 14));
 exitApp = new JMenuItem("Exit the application");
 exitApp.setFont(new Font("TimesRoman",Font.BOLD, 12));
 exit.add(exitApp);
 exitApp.addActionListener(this);
 mb.add(exit);

 }

 99

 /***

 Method actionPerformed: defines the actions to take
 for the button various selections in the two menus

 ***/

public void actionPerformed(ActionEvent evt)
 {
 if(evt.getSource()==exitApp)
 {
 System.exit(0); // exit the application;
 }
 if(evt.getSource()==addUser)
 {
 new AddUser(this);
 }
 if(evt.getSource()==removeUser)
 {
 new RemoveUser(this);
 }
 if(evt.getSource()==showUsers)
 {
 new ShowUsers(this);
 }
 if(evt.getSource()==addRole)
 {
 new AddRole(this);
 }
 if(evt.getSource()==removeRole)
 {
 new RemoveRole(this);
 }
 if(evt.getSource()==showRoles)
 {
 new ShowRoles(this);
 }
 if(evt.getSource()==addUserRole)
 {
 new AddUserRole(this);
 }
 if(evt.getSource()==removeUserRole)
 {
 new RemoveUserRole(this);
 }

 100

 if(evt.getSource()==showUserRoles)
 {
 new ShowUserRoles(this);
 }
 if(evt.getSource()==showUsersRoles)
 {
 new ShowUsersRoles(this);
 }
 if(evt.getSource()==addRoleDatabase)
 {
 new AddRoleDatabase(this);
 }
 if(evt.getSource()==removeRoleDatabase)
 {
 new RemoveRoleDatabase(this);
 }
 if(evt.getSource()==showRoleDatabases)
 {
 new ShowRoleDatabase(this);
 }
 }
 public static void main(String args[])
 {
 Jdrbac nj = new Jdrbac();

 }
}// End of Jdrbac.java

 101

//--
// Filename: AddUser.java
// Date: 02/20/2002
// Compiler: SDK 1.3
//--

import java.sql.*;
import javax.swing.*;
import javax.swing.event.*;
import java.util.Vector;

/*
 * This class allows to add a user to the JDRBAC application
 * It allows to insert into the users table a record that
 * represents the added user
 *
 * @authors Greg Nygard; Faouzi Hammoudi
 *
 */

public class AddUser extends JFrame implements ActionListener
{

 /********************************
 Data members
 ********************************/
 private JTextField nameField;
 private JPasswordField pwdField;
 private JTextField status;
 public static boolean validUser=true;
 private String temp;
 private String username;
 private String password;
 private JButton addUser, clear, exit;
 private JPanel pN, pNs;
 Container container; // a generic container
 private ResultSet rset;
 private Statement stmt;
 Jdrbac parent;

 // ----------- ----- Connection Variables ------------------

 String userid = "sa";
 String pass = "";
 String url = "jdbc:hsqldb:hsql://localhost";
 String driver = "org.hsqldb.jdbcDriver";

 102

 Connection conn;

 /********************************
 Constructor
 ********************************/

 public AddUser(Jdrbac parent)
 {
 super("Jdrbac: Adding a User");
 this.parent=parent;
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });
 container = getContentPane(); // gets the contentPane for the frame

 container.setLayout(new BorderLayout()); // sets the layout manager to
 // BorderLayout
 pN = new JPanel(); pNs = new JPanel();
 nameField = new JTextField(20);
 pwdField = new JPasswordField(20);
 nameField.addActionListener(this);
 pwdField.addActionListener(this);
 pwdField.setEchoChar('*');
 pN.add(new Label("Enter the Username:"));
 pN.add(nameField);
 pN.add(new Label("and P A S S W O R D:"));
 pN.add(pwdField);
 addUser = new JButton("Add");
 addUser.addActionListener(this);
 clear = new JButton("Clear");
 clear.addActionListener(this);
 exit = new JButton("Exit");
 exit.addActionListener(this);
 pNs.add(addUser); pNs.add(clear);pNs.add(exit);
 container.add(pN,BorderLayout.CENTER);
 pN.add(new JLabel("Operation S t a t u s:"));
 pN.add(status = new JTextField(20));
 container.add(pNs,BorderLayout.SOUTH);
 setBounds(250,150,380, 200); // sets the size of the window
 setVisible(true);

 103

 // Connecting to the reference data
 try
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, userid, pass);
 stmt = conn.createStatement();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.err.println(cnfe);
 }
 catch(SQLException sqle)
 {
 System.err.println(sqle); // error connection to database
 }

 }

 public void actionPerformed(ActionEvent evt)
 {
 Object source = evt.getSource();
 if(evt.getSource()==exit)
 {
 this.dispose();
 }
 if(evt.getSource()==clear)
 {
 nameField.setText("");
 pwdField.setText("");
 status.setText("");
 }
 if(source.equals(addUser))
 {
 username = new String(nameField.getText());
 password = new String(pwdField.getText());
 validateUser(username, password);
 if(!validUser)
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("insert into users " +
 "values ('" + username + "' " + "," + "'" + password + "'" + ")");

 status.setText("User added ");

 104

 nameField.setText("");
 pwdField.setText("");
 }
 catch(SQLException sqle)
 {
 status.setText(sqle.getMessage());
 }
 }
 else status.setText("The user is already in the database");
 }

 }

 /***
 This method checks if the user to be added is not
 currently in the database. If yes, the administrator has
 assign a new username for the user to resolve the conflict.
 ***/

 public boolean validateUser(String username, String password)
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select * from users " +
 "where users.username = '" + username + "' " +
 "and users.password = '" + password + "'");

 if (rset.next())
 {
 validUser=true;
 return validUser;
 }
 }
 catch(SQLException sqle)
 {
 validUser=false;
 }
 validUser=false;
 return validUser;
 }
}// End of AddUser.java

 105

//--
// Filename: RemoveUser.java
// Date: 02/20/2002
// Compiler: SDK 1.3
//--

import java.sql.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

/*
 * This class allows to remove a user
 * from the JDRBAC application
 *
 * @authors Greg Nygard; Faouzi Hammoudi
 *
 */

public class RemoveUser extends JFrame implements ActionListener
{
 /********************************
 Data members
 ********************************/
 private JTextField nameField;
 private JPasswordField pwdField;
 private JTextField status;
 public static boolean validUser=true;
 private String temp;
 private String username;
 private String password;
 private JButton removeUser, clear, exit;
 private JPanel pN, pNs;
 Container container; // a generic container
 private ResultSet rset;
 private Statement stmt;
 Jdrbac parent;

 // ----------- ----- Connection Variables ------------------
 String userid = "sa";
 String pass = "";
 String url = "jdbc:hsqldb:hsql://localhost";
 String driver = "org.hsqldb.jdbcDriver";

 106

 Connection conn;

 /********************************
 Constructor
 ********************************/

 public RemoveUser(Jdrbac parent)
 {
 super("Jdrbac: Removing a user");
 this.parent=parent;
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });
 container = getContentPane(); // gets the contentPane for the frame

 container.setLayout(new BorderLayout()); // sets the layout manager to
 // BorderLayout
 pN = new JPanel(); pNs = new JPanel();
 nameField = new JTextField(20);
 pwdField = new JPasswordField(20);
 nameField.addActionListener(this);
 pwdField.addActionListener(this);
 pwdField.setEchoChar('*');
 pN.add(new Label("Enter the Username:"));
 pN.add(nameField);
 pN.add(new Label("and P A S S W O R D:"));
 pN.add(pwdField);
 removeUser = new JButton("Remove");
 removeUser.addActionListener(this);
 clear = new JButton("Clear");
 clear.addActionListener(this);
 exit = new JButton("Exit");
 exit.addActionListener(this);
 pNs.add(removeUser); pNs.add(clear);pNs.add(exit);
 container.add(pN,BorderLayout.CENTER);
 pN.add(new JLabel("Operation S t a t u s:"));
 pN.add(status = new JTextField(20));
 container.add(pNs,BorderLayout.SOUTH);
 setBounds(250,150,380, 200); // sets the size of the window
 setVisible(true);
 try
 {

 107

 Class.forName(driver);
 conn = DriverManager.getConnection(url, userid, pass);
 stmt = conn.createStatement();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.err.println(cnfe);
 }
 catch(SQLException sqle)
 {
 System.err.println(sqle); // error connection to database
 }

 }

 public void actionPerformed(ActionEvent evt)
 {
 Object source = evt.getSource();
 if(evt.getSource()==exit)
 {
 this.dispose();
 }
 if(evt.getSource()==clear)
 {
 nameField.setText("");
 pwdField.setText("");
 status.setText("");
 }
 if(source.equals(removeUser))
 {
 username = new String(nameField.getText());
 password = new String(pwdField.getText());
 validateUser(username, password);
 if(validUser)
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("delete from users " +
 "where users.username = '" + username + "' " +
 "and users.password = '" + password + "'");

 status.setText("User removed ");
 nameField.setText("");
 pwdField.setText("");

 108

 }
 catch(SQLException sqle)
 {
 status.setText(sqle.getMessage());
 }
 }
 else status.setText("The user is not in the database");
 }

 }

 /***
 This method checks if the user to be removed is not
 currently in the database.
 ***/
 public boolean validateUser(String username, String password)
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select * from users " +
 "where users.username = '" + username + "' " +
 "and users.password = '" + password + "'");

 if (rset.next())
 {
 validUser=true;
 return validUser;
 }
 }
 catch(SQLException sqle)
 {
 validUser=false;
 }
 validUser=false;
 return validUser;
 }
}// End of RemoveUser.java

 109

//--
// Filename: ShowUsers.java
// Date: 02/20/2002
// Compiler: SDK 1.3
//--
import java.sql.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

/*
 * This class allows to see the list of the users of the JDRBAC
 * application. It provides an easy way to query the database
 * and find all the users.
 *
 * @authors Greg Nygard; Faouzi Hammoudi
 *
 */

public class ShowUsers extends JFrame implements ActionListener
{
 /********************************
 Data members
 ********************************/
 private List usernames;
 private JTextField status;
 private JButton exit;
 private Panel pN, pNs;
 Container container; // a generic container
 private ResultSet rset;
 private Statement stmt;
 Jdrbac parent;

 // ----------- ----- Connection Variables ------------------
 String userid = "sa";
 String pass = "";
 String url = "jdbc:hsqldb:hsql://localhost";
 String driver = "org.hsqldb.jdbcDriver";
 Connection conn;

 /********************************
 Constructor
 ********************************/

 110

 public ShowUsers(Jdrbac parent)
 {
 super("Jdrbac: List of the users and passwords");
 this.parent=parent;
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });
 container = getContentPane(); // gets the contentPane for the frame

 container.setLayout(new BorderLayout()); // sets the layout manager to
 // BorderLayout
 pN = new Panel(); pN.setLayout(new GridLayout(2,1));
 pNs = new Panel();
 usernames = new List(4, false);
 usernames.addActionListener(this);
 pN.add(usernames);
 pN.add(new Label("Username *** | *** Password:"));
 pN.add(usernames);
 exit = new JButton("Exit");
 exit.addActionListener(this);
 pNs.add(exit);
 container.add(pN,BorderLayout.CENTER);
 pNs.add(new JLabel("Operation S t a t u s:"));
 pNs.add(status = new JTextField(20));
 container.add(pNs,BorderLayout.SOUTH);
 setBounds(250,150,430, 250); // sets the size of the window
 setVisible(true);
 try
 {
 Class.forName(driver);
 conn = DriverManager.getConnection(url, userid, pass);
 stmt = conn.createStatement();
 getUsers();
 }
 catch(ClassNotFoundException cnfe)
 {
 System.err.println(cnfe);
 }
 catch(SQLException sqle)
 {
 System.err.println(sqle); // error connection to database
 }

 111

 }

 public void actionPerformed(ActionEvent evt)
 {
 Object source = evt.getSource();
 if(evt.getSource()==exit)
 {
 this.dispose();
 }
 }
 public void getUsers()
 {
 try
 {
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 rset = stmt.executeQuery("select * from users ");

 while (rset.next())
 {
 String temp= new String(rset.getString(1)+
 " *** | *** "+ rset.getString(2));
 usernames.add(temp);
 status.setText("Users In the database ");
 }
 rset.close();
 }
 catch(SQLException sqle)
 {
 status.setText(sqle.getMessage());
 }
 }
}// End of ShowUsers.java

 112

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Dr. Dan Boger, Code C4I

Naval Postgraduate School
Monterey, CA 93943-5118

4. LCDR Chris Eagle, Code CS
Naval Postgraduate School
Monterey, CA 93943-5118

5. Professor James Bret Michael, Code CS/Mj
Naval Postgraduate School
Monterey, CA 93943-5118

6. Professor John Osmundson, Code C4I

Naval Postgraduate School
Monterey, CA 93943-5118

7. Lieutenant Greg Nygard, Code 32
Naval Postgraduate School
Monterey, CA 93943-5118

8. Captain Faouzi Hammoudi, Code 32
Naval Postgraduate School
Monterey, CA 93943-5118

9. Dr. Ravi Sandhu
George Mason University
ISE Department, Mail Stop 4A4
Fairfax, VA 22030-4444

10. Dr. Terry Mayfield

IDA/CSED
1801 N. Beauregard St.

 Alexandria, VA 22311

 113

11. D. Richard Kuhn
National Institute of Standards and Technology
Computer Security Division
100 Bureau Drive Stop 8930
Gaithersburg, MD 20899-8930

12. Etat Major de l’Armée de l’Air
Ministere de la Defense Nationale
Avenue Bab M’nara,
Tunis 1030, Tunisia

 114

	I.BACKGROUND
	INTRODUCTION
	DISCUSSION
	NIST RBAC MODEL
	2.Hierarchical RBAC
	3.CONSTRAINED RBAC
	a.Static Separation of Duty (SSD)
	b.Dynamic Separation of Duty (DSD)
	4.SYMMETRIC RBAC

	OBSERVATIONS
	A. DATABASE ROLE-BASED ACCESS CONTROL (DRBAC)
	B. QUERY VALIDATION
	C. WHY JAVA?
	D.TREE STRUCTURE
	E. PROCESS
	1. User Creation of Query
	2. Query Validation
	3. Query Execution

	III.DESIGN
	A.REQUIREMENTS ANALYSIS
	1.Security
	2.Platform Independence
	4.Flexibility
	5. Ease of Management
	6.Cost Effective

	B.USER INTERACTION PROCESS
	C.JDRBAC TREE DESIGN
	�
	D. APPLICATION DESIGN
	1.Identification and Authentication
	2.Role based access control policy implementation
	3.Temporal Validation Mechanism
	4.JDRBAC Web application

	IV. JDRBAC APPLICATION DEVELOPMENT
	A.INTRODUCTION
	B.TASK DEFINITION
	C.CODE DEVELOPMENT
	1. Login
	2. Interface
	3.JDRBAC Tree Structure
	4. Database Queries
	5. Reference

	V.JDRBAC APPLICATION IMPLEMENTATION
	A. INTRODUCTION
	B. UDERSTANDING THE RBAC POLICY OF THE APPLICATION
	C. MAPPING THE APPLICATION POLICY
	D. STORAGE OF THE JDRBAC REFERENCE DATA
	1.Hypersonic SQL/ HSQLDB:

	E.DESIGN OF THE RBAC POLICY REFERENCE DATA
	TABLE 1.Query methods
	F. THE ADMINISTRATOR INTERFACE
	G. TESTING
	H. ADDITIONAL FUNCTIONALITY

	VI.SECURITY
	A.INTRODUCTION
	B.DISCUSSION
	C.CLIENT – APPLICATION SECURITY
	D.DATABASE – APPLICATION SECURITY
	E.DATABASE SECURITY
	F.APPLICATION SECURITY

	VII.CASE STUDIES
	A.INTRODUCTION
	DISCUSSION

	VIII.CONCLUSIONS AND FUTURE WORK
	LIST OF REFERENCES
	APPENDIX A
	INITIAL DISTRIBUTION LIST

